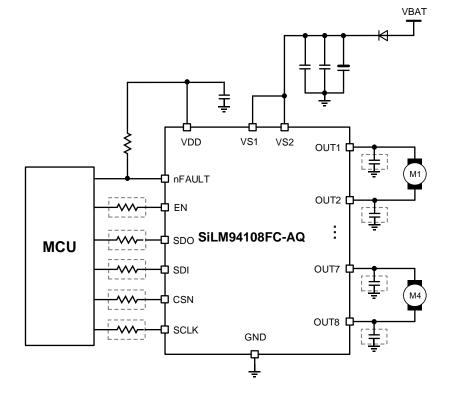
### **Eight Channel Half Bridge Drivers**

#### **GENERAL DESCRIPTION**

The SiLM94108C-AQ is a protected eight-fold halfbridge driver designed especially for automotive motion control applications such as Heating, Ventilation and Air Conditioning (HVAC) flap DC motor control.


The half bridge drivers are designed to drive DC motor loads in sequential operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, overcurrent, open load, power supply failure and overtemperature detection. This device is attractive for automotive applications considering its low quiescent current. The small fine pitch exposed pad package, TSSOP24-EP, provides good thermal performance and reduces PCB-board space and costs.

#### APPLICATIONS

- HVAC Flap DC motors
- Monostable and bistable Relays
- Side mirror x-y adjustment and mirror fold
- LEDs

#### FEATURES

- Eight half bridge power outputs
- Very low power consumption in sleep mode
- 3.3V/5V compatible inputs with hysteresis
- All outputs with overload and short circuit protection
- Independently diagnosable outputs (overcurrent, open load)
- Open load diagnostics in ON-state for all high-side
   and low-side
- Outputs with open load thresholds
- 16-bit Standard SPI interface with daisy chain and in-frame response capability for control and diagnosis
- · Fast diagnosis with the global error flag
- PWM capable outputs for frequencies 80Hz, 100Hz, 200Hz and 2kHz with 8-bit duty cycle resolution
- Overtemperature pre-warning and protection
- Overvoltage and Undervoltage lockout
- Cross-current protection
- nFAULT pin indicator(Only SiLM94108FC-AQ)
- AEC-Q 100 qualified for automotive



Sillumin Semiconductor Co., Ltd. – <u>www.sillumin.com</u>

### **Table of Contents**

| General Description                                        | 1  |
|------------------------------------------------------------|----|
| Applications                                               | 1  |
| Features                                                   | 1  |
| PIN Configuration                                          | 4  |
| PIN Description                                            | 4  |
| Ordering Information                                       | 5  |
| Functional Block Diagram                                   | 6  |
| Voltage and Current Definition                             | 7  |
| Absolute Maximum Ratings                                   | 8  |
| Recommended Operation Conditions                           | 8  |
| Thermal Resistance                                         | 8  |
| Electricaml Characteristics                                | 9  |
| General Description                                        | 14 |
| Power Supply                                               | 14 |
| Operation Modes                                            | 14 |
| Reset Behavior                                             | 14 |
| Reverse Polarity Protection                                | 14 |
| Half-Bridge Outputs                                        | 15 |
| Half-bridge Operation with Continuous Mode                 | 15 |
| Half-bridge Operation with PWM Enabled                     | 15 |
| Inductive Load                                             | 15 |
| Protection and Diagnosis                                   | 16 |
| Short Circuit of Output to Supply or Ground                | 17 |
| Cross-Current                                              | 18 |
| Temperature Monitoring                                     | 20 |
| Overvoltage and Undervoltage Shutdown                      | 22 |
| Open Load                                                  | 23 |
| Serial Peripheral Interface (SPI)                          | 24 |
| SPI Description                                            | 24 |
| Global Error Flag                                          | 25 |
| Global Status Register                                     | 25 |
| SPI Protocol Error Detection                               | 26 |
| SPI with Independent Slave Configuration                   |    |
| Daisy Chain Operation                                      | 29 |
| Status Register Change During SPI Communication            | 31 |
| SPI Bit Mapping                                            |    |
| SPI Control Registers                                      |    |
| SPI Status Registers                                       | 43 |
| Sillumin Semiconductor Co., Ltd. – <u>www.sillumin.com</u> | 2  |

## SiLM94108C-AQ

| Application Information | 49 |
|-------------------------|----|
| Package Case Outlines   | 51 |
| Revision History        | 52 |



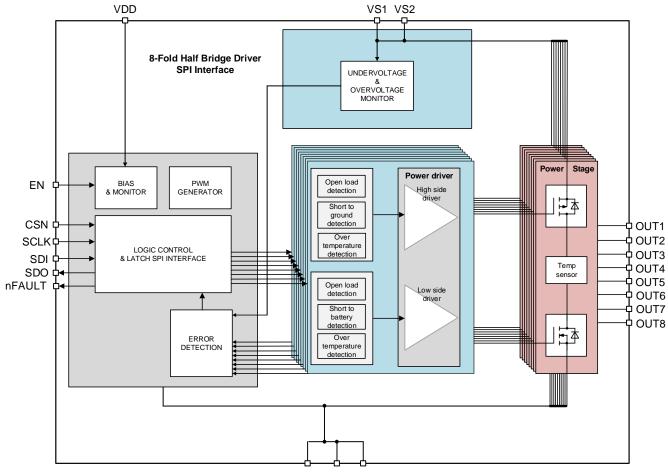
### **PIN CONFIGURATION**

| Package    | Pin Configuration (Top View)                                                                                   |                                                                                                                                                                                                             |                                                                                                                                 |                                                                                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSSOP24-EP | GND 1<br>OUT1 2<br>OUT5 3<br>OUT7 4<br>SDI 5<br>VDD 6<br>SDO 7<br>EN 8<br>NC 9<br>OUT6 10<br>OUT4 11<br>GND 12 | <ul> <li>24 GND</li> <li>23 OUT2</li> <li>22 OUT8</li> <li>21 VS2</li> <li>20 SCLK</li> <li>19 CSN</li> <li>18 NC</li> <li>17 NC</li> <li>16 VS1</li> <li>15 NC</li> <li>14 OUT3</li> <li>13 GND</li> </ul> | GND 1<br>OUT1 2<br>OUT5 3<br>OUT7 4<br>SDI 5<br>VDD 6<br>SDO 7 EP<br>EN 8<br>NC 9<br>OUT6 10<br>OUT6 10<br>OUT4 11<br>nFAULT 12 | <ul> <li>24 GND</li> <li>23 OUT2</li> <li>22 OUT8</li> <li>21 VS2</li> <li>20 SCLK</li> <li>19 CSN</li> <li>18 NC</li> <li>17 NC</li> <li>16 VS1</li> <li>15 NC</li> <li>14 OUT3</li> <li>13 GND</li> </ul> |
|            | SiLM94108CM                                                                                                    | IG-AQ                                                                                                                                                                                                       | SiLM94108FC                                                                                                                     | /IG-AQ                                                                                                                                                                                                      |

### **PIN DESCRIPTION**

| No. | Pin    | Description                                                                                                                       |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1   | GND    | Ground. All ground pins should be externally connected together.                                                                  |
| 2   | OUT1   | Power half-bridge 1                                                                                                               |
| 3   | OUT5   | Power half-bridge 5                                                                                                               |
| 4   | OUT7   | Power half-bridge 7                                                                                                               |
| 5   | SDI    | Serial data input with internal pull down                                                                                         |
| 6   | VDD    | Logic supply voltage                                                                                                              |
| 7   | SDO    | Serial data output                                                                                                                |
| 8   | EN     | Enable with internal pull-down; Places device in standby mode by pulling the EN line Low                                          |
| 9   | NC     | No Connect.                                                                                                                       |
| 10  | OUT6   | Power half-bridge 6                                                                                                               |
| 11  | OUT4   | Power half-bridge 4                                                                                                               |
|     | GND    | Ground. All ground pins should be externally connected together. (Only SiLM94108G-AQ)                                             |
| 12  | nFAULT | Fault indicator output. Pulled logic low during a fault condition and requires an external pull-up resistor. (Only SiLM94108F-AQ) |
| 13  | GND    | Ground. All ground pins should be externally connected together.                                                                  |
| 14  | OUT3   | Power half-bridge 3                                                                                                               |
| 15  | NC     | No Connect.                                                                                                                       |

Sillumin Semiconductor Co., Ltd. - www.sillumin.com


| No. | Pin  | Description                                                                                                                                        |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | VS1  | Main supply voltage for power half bridges. VS1 should be externally connected to VS2.                                                             |
| 17  | NC   | No Connect.                                                                                                                                        |
| 18  | NC   | No Connect.                                                                                                                                        |
| 19  | CSN  | Chip select Not input with internal pull up                                                                                                        |
| 20  | SCLK | Serial clock input with internal pull down                                                                                                         |
| 21  | VS2  | Main supply voltage for power half bridges. VS1 should be externally connected to VS2.                                                             |
| 22  | OUT8 | Power half-bridge 8                                                                                                                                |
| 23  | OUT2 | Power half-bridge 2                                                                                                                                |
| 24  | GND  | Ground. All ground pins should be externally connected together.                                                                                   |
| EP  | -    | Exposed Die Pad; For cooling and EMC purposes only - not usable as electrical ground.<br>Electrical ground must be provided by pins 1,12,13,24. 1) |

### **ORDERING INFORMATION**

| Order Part No.   | nFault Feature | Package             | QTY       |  |
|------------------|----------------|---------------------|-----------|--|
| SiLM94108CMG-AQ  | No             | TSSOP24-EP, Pb-Free | 4000/Reel |  |
| SiLM94108FCMG-AQ | Yes            | TSSOP24-EP, Pb-Free | 4000/Reel |  |



### FUNCTIONAL BLOCK DIAGRAM



GND GND GND

Figure 1. Block Diagram SiLM94108FC-AQ (SPI Interface)



### **VOLTAGE AND CURRENT DEFINITION**

Figure 2 shows terms used in this datasheet, with associated convention for positive values.

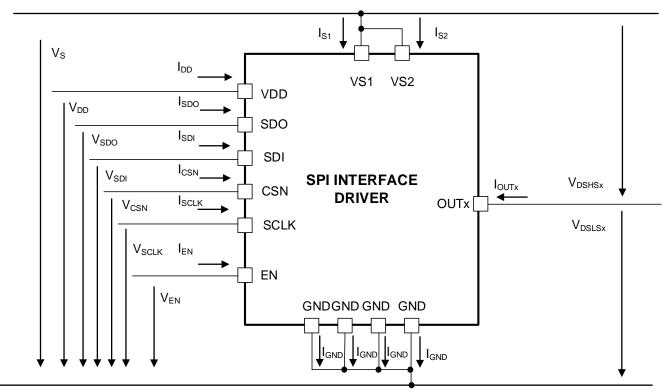



Figure 2. Voltage and current Definition

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Definition                                | Min.  | Max. | Units |
|------------------|-------------------------------------------|-------|------|-------|
| Vs               | Supply voltage                            | -0.3  | 40   | V     |
| dVs/dt           | Supply Voltage Slew Rate                  |       | 10   | V/us  |
| Vout             | Power half-bridge output voltage          | - 0.3 | 40   | V     |
| V <sub>DD</sub>  | Logic supply voltage                      | -0.3  | 5.5  | V     |
| V <sub>SDI</sub> |                                           |       |      |       |
| VSCLK            | Logic input voltages (SDL SCLK CSN EN)    | -0.3  | Voo  | V     |
| V <sub>CSN</sub> | Logic input voltages (SDI, SCLK, CSN, EN) | -0.3  | V DD | V     |
| Ven              |                                           |       |      |       |
| VnFAULT, VSDO    | Logic output voltage (SDO, nFAULT)        | -0.3  | Vdd  | V     |
| I <sub>S1</sub>  | Continuous Supply Current for VS1         | 0     | 3.0  | A     |
| Is2              | Continuous Supply Current for VS2         | 0     | 3.0  | A     |
| Ignd             | Current per GND pin                       | 0     | 2.0  | A     |
| lout             | Output Currents                           | -2.0  | 2.0  | A     |
| TJ               | Junction temperature                      | -40   | 150  | °C    |
| Ts               | Storage temperature                       | -50   | 150  |       |
| Vesd             | НВМ                                       | -6000 | 6000 | V     |
| Vesd             | CDM                                       | -2000 | 2000 | V     |

### **RECOMMENDED OPERATION CONDITIONS**

| Symbol                                          | Definition                                      | Min  | Max | Units |
|-------------------------------------------------|-------------------------------------------------|------|-----|-------|
| V <sub>S(nor)</sub>                             | Supply voltage range for normal operation       | 4.6  | 32  |       |
| V <sub>DD</sub>                                 | Logic supply voltage range for normal operation | 3.0  | 5.5 | V     |
| V <sub>SDI,</sub> V <sub>SCLK</sub><br>Vcsn,Ven | Logic input voltages (SDI, SCLK, CSN, EN)       | -0.3 | 5.5 |       |
| TJ                                              | Junction temperature                            | - 40 | 150 | °C    |

### THERMAL RESISTANCE

| Symbol    | Definition                                             | Value | Unit |
|-----------|--------------------------------------------------------|-------|------|
| Reja      | Junction-to-ambient thermal resistance <sup>1</sup>    | 31    | °C/W |
| Rejc(top) | Junction-to-case (top) thermal resistance <sup>1</sup> | 13    | °C/W |

Note1: thermal resistance is based on standard JESD51-7 high effective thermal conductivity test board

### **ELECTRICAML CHARACTERISTICS**

 $V_S = 4.6 V$  to 32 V,  $V_{DD} = 3.0V$  to 5.5V,  $T_J = -40 \sim 125^{\circ}C$ , EN= HIGH,  $I_{OUTn} = 0A$ ; Typical values refer to  $V_{DD} = 5.0 V$ ,  $V_S = 13.5 V$  unless otherwise specified; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Symbol                        | Parameter                                 | Condition                              | Min. | Тур. | Max. | Unit |
|-------------------------------|-------------------------------------------|----------------------------------------|------|------|------|------|
| Current Cons                  | umption, EN=GND                           |                                        |      |      |      | I    |
| Isq                           | Supply Quiescent current                  |                                        |      | 0.5  | 4    |      |
| Idd_Q                         | Logic supply quiescent current            | EN=GND                                 |      | 0.1  | 2    | μA   |
| $I_{SQ}+I_{DD_Q}$             | Total quiescent current                   |                                        |      | 0.6  | 6    |      |
| Current Cons                  | umption, EN=HIGH                          |                                        |      | 1    | 1    | I    |
| ls                            | Supply current                            | Power drivers and power stages are off |      | 0.35 | 0.7  |      |
| Is_hson <sup>1</sup>          | Supply current                            | All high-sides ON                      |      | 4    | 8    |      |
| I <sub>DD</sub>               | Logic current                             | SPI not active                         |      | 0.8  | 1.5  | mA   |
| Idd_run <sup>2</sup>          | Logic supply current                      | SPI 5MHz                               |      | 2    |      |      |
| $I_{S} + I_{DD_{RUN}^2}$      | Total supply current                      | SPI 5MHz                               |      | 2.35 |      |      |
| Over and Unc                  | lervoltage Lockout                        |                                        |      | 1    | 1    | 1    |
| V <sub>UV_ON</sub>            | Undervoltage Switch ON voltage threshold  | Vs increasing                          | 4    | 4.3  | 4.6  |      |
| $V_{\text{UV}\_\text{OFF}}$   | Undervoltage Switch OFF voltage threshold | V <sub>s</sub> decreasing              | 3.8  | 4.1  | 4.4  |      |
| $V_{UV\_HY^2}$                | Undervoltage Switch ON/OFF<br>hysteresis  | VUV_ON - VUV_OFF                       |      | 0.2  |      |      |
| $V_{\text{OV1}\_\text{OFF}}$  | Overvoltage Switch OFF voltage threshold  | Vs increasing                          | 21   |      | 25   |      |
| V <sub>OV1_ON</sub>           | Overvoltage Switch ON voltage threshold   | Vs decreasing                          | 20   |      | 24   |      |
| $V_{\text{OV1}\_\text{HY}}^2$ | Overvoltage Switch ON/OFF<br>hysteresis   | VOV1_OFF - VOV1_ON                     |      | 1.0  |      |      |
| $V_{\text{OV2}_{\text{OFF}}}$ | Overvoltage Switch OFF voltage threshold  | Vs increasing                          | 32.7 |      | 36   |      |
| Vov2_on                       | Overvoltage Switch ON voltage threshold   | Vs decreasing                          | 32   |      | 35   | 1    |
| $V_{OV2\_HY}^2$               | Overvoltage Switch ON/OFF<br>hysteresis   | Vov2_OFF - Vov2_ON                     |      | 1.0  |      | 1    |
| $V_{DD_POR}$                  | V <sub>DD</sub> Power-On-Reset            | V <sub>DD</sub> increasing             | 2.4  | 2.7  | 2.9  | 1    |
| V <sub>DD_POffR</sub>         | VDD Power-Off-Reset                       | V <sub>DD</sub> decreasing             | 2.35 | 2.65 | 2.85 | 1    |

### SiLM94108C-AQ

| Symbol                       | Parameter                                       | Condition                                                    | Min. | Тур. | Max. | Unit  |
|------------------------------|-------------------------------------------------|--------------------------------------------------------------|------|------|------|-------|
| $V_{DD\_POR\_HY^2}$          | V <sub>DD</sub> Power ON/OFF hysteresis         | VDD_POR - VDD_POffR                                          |      | 0.05 |      |       |
| Static Drain-so              | urce On-Resistance (High-Side or Low            | v-Side)                                                      |      |      |      | 1     |
| RDSON_HB_25C                 | High-Side or Low-Side RDSON (all outputs)       | lо∪т = ±0.5 А;Т」=<br>25 °С                                   |      | 850  | 1200 | mΩ    |
| RDSON_HB_125C                | High-Side or Low-Side RDSON (all outputs)       | louт =±0.5 А;<br>Тј =125 ℃                                   |      | 1400 | 1800 | mΩ    |
| Output Protection            | on and Diagnosis of high-side (HS) chan         | nels of half-bridge output                                   | 1    | 1    | J    |       |
| Isd_Hs                       | HS Overcurrent Shutdown<br>Threshold            | See Figure 5                                                 | 0.9  | 1.1  | 1.4  | А     |
| ILIM_HS- ISD_HS <sup>2</sup> | Difference between shutdown and limit current   | l <sub>⊔м_нs</sub>   ≥  l <sub>sD_нs</sub>  <br>See Figure 5 | 0    | 0.6  | 1.2  | A     |
| $T_{dSD_{HS}}^2$             | Overcurrent Shutdown filter time                |                                                              | 15   | 18   | 23   | μs    |
| IOLD_HS                      | Open Load Detection Current                     |                                                              | 3    | 8    | 20   | mA    |
| Ioldn_hs                     | Open Load Detection negative<br>Current         |                                                              | 3    | 8    | 20   | mA    |
| told_Hs <sup>2</sup>         | Open Load Detection filter time                 |                                                              | 2000 | 3000 | 4000 | μs    |
| Output Protection            | on and Diagnosis of low-side (LS) chann         | els of half-bridge output                                    |      |      |      | I     |
| Isd_ls                       | LS Overcurrent Shutdown<br>Threshold            | Figure 6                                                     | 0.9  | 1.1  | 1.4  | A     |
| ILIM_LS <b>-I</b> SD_LS      | Difference between shutdown and limit current   | I <sub>LIM_LS</sub> ≥ I <sub>SD_LS</sub><br>Figure 6         | 0    | 0.6  | 1.2  | A     |
| $t_{dSD\_LS}^2$              | Overcurrent Shutdown filter time                |                                                              | 15   | 18   | 23   | μs    |
| Iold_ls                      | Open Load Detection Current                     |                                                              | 3    | 8    | 20   | mA    |
| Ioldn_ls                     | Open Load Detection negative<br>Current         |                                                              | 3    | 8    | 20   | mA    |
| told_ls <sup>2</sup>         | Open Load Detection filter time                 |                                                              | 2000 | 3000 | 4000 | μs    |
| Outputs OUT(1                | n) leakage current                              |                                                              |      |      |      |       |
| QLHn_NOR                     | HS leakage current in off state                 | Voutn = 0V ; EN=High                                         |      | 0.5  | 2    | μA    |
| QLHn_SLE                     | HS leakage current in off state                 | V <sub>OUTn</sub> = 0V ; EN=GND                              |      | 0.5  | 2    | μA    |
| QLLn_NOR                     | LS leakage current in off state                 | Voutn = Vs ; EN=High                                         |      | 0.5  | 2    | μA    |
| IQLLn_SLE                    | LS leakage current in off state                 | V <sub>OUTn</sub> = Vs ; EN=GND                              |      | 0.5  | 2    | μA    |
| Output Switchin              | g Times                                         | 1                                                            | 1    | 1    | I    | I     |
| dVout/dt <sup>3</sup>        | Slew rate of high-side and low-<br>side outputs | Resistive load = $100\Omega$ ; V <sub>S</sub> =13.5V         | 0.1  | 0.35 | 3.5  | V/ µs |
| t <sub>dONH</sub>            | Output delay time high side driver on           | Resistive load =<br>100Ω to GND                              | 5    | 20   | 35   | μs    |

### SiLM94108C-AQ

| Symbol                                        | Parameter                                    | Condition                                                                       | Min.                      | Тур.                  | Max.                      | Unit |
|-----------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|---------------------------|-----------------------|---------------------------|------|
| t <sub>dOFFH</sub>                            | Output delay time high side driver off       | Resistive load = $100\Omega$ to GND                                             | 15                        | 45                    | 75                        | μs   |
| t <sub>dONL</sub>                             | Output delay time low side driver on         | Resistive load = $100\Omega$ to Vs                                              | 5                         | 20                    | 35                        | μs   |
| tdOFFL                                        | Output delay time low side driver off        | Resistive load =<br>100Ω to Vs                                                  | 15                        | 45                    | 75                        | μs   |
| t <sub>DHL<sup>2</sup></sub>                  | Cross current protection time, high to low   | Resistive load =<br>100Ω                                                        | 100                       | 128                   | 160                       | μs   |
| t <sub>DLH</sub> <sup>2</sup>                 | Cross current protection time, low to high   | Resistive load =<br>100Ω                                                        | 100                       | 128                   | 160                       | μs   |
| Input Interfac                                | e: Logic Input EN                            | I                                                                               |                           |                       |                           |      |
| Venh                                          | High-input voltage                           |                                                                                 | 0.75<br>* V <sub>DD</sub> |                       |                           | V    |
| V <sub>ENL</sub>                              | Low-input voltage                            |                                                                                 |                           |                       | 0.25<br>* V <sub>DD</sub> | V    |
| $V_{\text{ENHY}}{}^2$                         | Hysteresis of input voltage                  |                                                                                 |                           | 1700                  |                           | mV   |
| RPD_EN                                        | Pull down resistor                           | Ven=02xVdd                                                                      | 20                        | 40                    | 70                        | kΩ   |
| SPI Interface                                 |                                              | L                                                                               |                           |                       |                           | 1    |
| $f_{\text{SPI,max}}^{2,4}$                    | Maximum SPI frequency                        |                                                                                 |                           |                       | 5.0                       | MHz  |
| tset <sup>2</sup>                             | Setup time                                   | See Figure 12                                                                   |                           |                       | 150                       | μs   |
| V <sub>IH</sub>                               | H-input voltage threshold                    |                                                                                 | 0.7 *<br>V <sub>DD</sub>  |                       |                           | V    |
| VIL                                           | L-input voltage threshold                    |                                                                                 |                           |                       | 0.3 *<br>V <sub>DD</sub>  | V    |
| V <sub>HY</sub> <sup>2</sup>                  | Hysteresis of input voltage                  |                                                                                 |                           | 500                   |                           | mV   |
| R <sub>PU_CSN</sub>                           | Pull up resistor at pin CSN                  | $V_{CSN} = 0.7 \text{ x VDD}$                                                   | 30                        | 50                    | 80                        | kΩ   |
| R <sub>PD_SDI</sub> ,<br>R <sub>PD_SCLK</sub> | Pull down resistor at pin SDI, SCLK          | VSDI, VSCLK = 0.2 X VDD                                                         | 20                        | 40                    | 70                        | kΩ   |
| Cı <sup>2</sup>                               | Input capacitance at pin CSN, SDI<br>or SCLK | $0V < V_{DD} < 5.25V$                                                           |                           | 10                    | 15                        | pF   |
| Vsdoh,<br>Vnfaulth                            | H-output voltage level                       | I <sub>SDOH</sub> = -1.6 mA                                                     | V <sub>DD</sub> - 0.4     | V <sub>DD</sub> - 0.2 |                           | v    |
| V <sub>SDOL</sub> ,<br>V <sub>nFAULTL</sub>   | L-output voltage level                       | Isdol = 1.6 mA                                                                  |                           | 0.2                   | 0.4                       | V    |
| Isdolk,<br>Vnfaultlk                          | Tri-state Leakage Current                    | V <sub>CSN</sub> = V <sub>DD</sub> ;<br>0V < V <sub>SDO</sub> < V <sub>DD</sub> | -1                        |                       | 1                         | μA   |
| C <sub>SDO<sup>2</sup></sub>                  | Tri-state input capacitance                  |                                                                                 |                           | 10                    | 15                        | pF   |
| Data Input Tim                                | l<br>ning <sup>2</sup>                       |                                                                                 |                           |                       |                           |      |

Sillumin Semiconductor Co., Ltd. - www.sillumin.com

### SiLM94108C-AQ

| Symbol              | Parameter                                       | Condition                                                                                                   | Min.                           | Тур. | Max.                           | Unit |
|---------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|------|--------------------------------|------|
| t <sub>pCLK</sub>   | SCLK Period                                     |                                                                                                             | 200                            |      |                                | ns   |
| tsclкн              | SCLK High Time                                  |                                                                                                             | 0.45<br>*<br>t <sub>pCLK</sub> |      | 0.55<br>*<br>t <sub>pCLK</sub> | ns   |
| tsalkl              | SCLK Low Time                                   |                                                                                                             | 0.45<br>*<br>t <sub>pCLK</sub> |      | 0.55<br>*<br>t <sub>pCLK</sub> | ns   |
| tBEF                | SCLK Low before CSN Low                         |                                                                                                             | 125                            |      |                                | ns   |
| t <sub>lead</sub>   | CSN Setup Time                                  |                                                                                                             | 250                            |      |                                | ns   |
| t <sub>lag</sub>    | SCLK Setup Time                                 |                                                                                                             | 250                            |      |                                | ns   |
| t <sub>BEH</sub>    | SCLK Low after CSN High                         |                                                                                                             | 125                            |      |                                | ns   |
| tsDI_setup          | SDI Setup Time                                  |                                                                                                             | 30                             |      |                                | ns   |
| tsDI_hold           | SDI Hold Time                                   |                                                                                                             | 30                             |      |                                | ns   |
| trin                | Input Signal Rise Time at pin SDI,<br>SCLK, CSN |                                                                                                             |                                |      | 50                             | ns   |
| t <sub>fIN</sub>    | Input Signal Fall Time at pin SDI,<br>SCLK, CSN |                                                                                                             |                                |      | 50                             | ns   |
| <b>t</b> DMODE      | Delay time from EN falling edge to standby mode |                                                                                                             |                                |      | 8                              | μs   |
| <b>t</b> CSNH       | Minimum CSN High Time                           |                                                                                                             | 5                              |      |                                | μs   |
| Data Output Tim     | ning <sup>2</sup>                               | L                                                                                                           |                                |      |                                |      |
| trspo               | SDO Rise Time                                   | C <sub>load</sub> = 40pF                                                                                    |                                | 30   | 80                             | ns   |
| t <sub>fSDO</sub>   | SDO Fall Time                                   | C <sub>load</sub> = 40pF                                                                                    |                                | 30   | 80                             | ns   |
| tensdo              | SDO Enable Time after CSN falling edge          | Low Impedance                                                                                               |                                |      | 75                             | ns   |
| toissoo             | SDO Disable Time after CSN rising edge          | Low Impedance                                                                                               |                                |      | 75                             | ns   |
| dutysclk            | Duty cycle of incoming clock at SCLK            |                                                                                                             | 45                             |      | 55                             | %    |
| t <sub>VASDO3</sub> | SDO Valid Time for $V_{DD}$ =3.3V               | V500 < 0.2 x V00 V500 > 0.8 x<br>V00 Cload = 40pF                                                           |                                | 70   | 95                             | ns   |
| tvasdo5             | SDO Valid Time for $V_{DD}=5V$                  | V <sub>300</sub> < 0.2 x V <sub>60</sub><br>V <sub>300</sub> > 0.8 V <sub>60</sub> C <sub>load</sub> = 40pF |                                | 50   | 65                             | ns   |
| Thermal warnir      | ng & Shutdown <sup>2</sup>                      |                                                                                                             |                                | -    |                                |      |
| T <sub>JW</sub>     | Thermal warning junction temperature            | Figure 9                                                                                                    | 120                            | 140  | 170                            | °C   |
| T <sub>JSD</sub>    | Thermal shutdown junction temperature           | Figure 9                                                                                                    | 150                            | 175  | 200                            | °C   |
| TJHYS               | Thermal comparator hysteresis                   |                                                                                                             |                                | 5    |                                | °C   |
|                     |                                                 |                                                                                                             |                                |      |                                |      |

1  $I_{S\_HSON}$  does not include the load current

Sillumin Semiconductor Co., Ltd. – <u>www.sillumin.com</u>

- 2 Not subject to production test, specified by design
- 3 Measured for 20%–80% of  $V_{\text{S}}.$
- 4 Not applicable in daisy chain configuration

### **GENERAL DESCRIPTION**

#### Power Supply

The SiLM94108C-AQ has two power supply inputs,  $V_S$  and  $V_{DD}$ . The half bridge outputs are supplied by  $V_S$ , which is connected to the 12V or 24V automotive supply rail.  $V_{DD}$  is used to supply the I/O buffers and internal voltage regulator of the device.

 $V_S$  and  $V_{\text{DD}}$  supplies are separated so that information stored in the logic block remains intact in the event of voltage drop outs or disturbances on  $V_S$ . The system can therefore continue to operate once  $V_S$  has recovered, without having to resend commands to the device.

A rising edge on  $V_{DD}$  crossing  $V_{DD_{POR}}$  triggers an internal Power-On Reset (POR) to initialize the IC at power-on. All data stored internally is deleted, and the outputs are switched off (high impedance).

An electrolytic and 100nF ceramic capacitors are recommended to be placed as close as possible to the  $V_S$  supply pin of the device for improved EMC performance in the high and low frequency band. The electrolytic capacitor must be dimensioned to prevent the  $V_S$  voltage from exceeding the absolute maximum rating. In addition, decoupling capacitors are recommended on the  $V_{DD}$  supply pin.

#### **Operation Modes**

The SiLM94108C-AQ has two operations modes: Normal mode, Sleep mode.

The SiLM94108C-AQ enters normal mode by setting the EN input High. In normal mode, all output transistors can be configured via SPI.

The SiLM94108C-AQ enters sleep mode by setting the EN input Low. The EN input has an internal pull-down resistor.

In sleep mode, all output transistors are turned off and the SPI register banks are reset. The current consumption is reduced to  $I_{SQ}+I_{DD_Q}$ .

#### **Reset Behavior**

There are two events that will reset the SiLM94108C-AQ.

If  $V_{DD}$  is below the undervoltage threshold,  $V_{DD_POffR}$ , the SPI Interface shall not function. The digital block will be deactivated, the logic contents cleared and the output stages are switched off. The digital block is initialized once  $V_{DD}$  voltage levels is above the undervoltage threshold,  $V_{DD_POR}$ . Then the NPOR bit is reset (NPOR=0 in SYS DIAG1 and Global Status Register).

If the EN pin is pulled Low, the logic content is reset and the device enters sleep mode. The reset event is reported by the NPOR bit (NPOR=0) once the SiLM94108C-AQ is in normal mode (EN=High;  $V_{DD} > V_{DD_POR}$ ).

#### **Reverse Polarity Protection**

The SiLM94108C-AQ requires an external reverse polarity protection. During reverse polarity, the free-wheeling diodes across the half bridge output will begin to conduct, causing an undesired current flow (I<sub>RB</sub>) from ground potential to battery and excessive power dissipation across the diodes. As such, a reverse polarity protection diode is recommended.

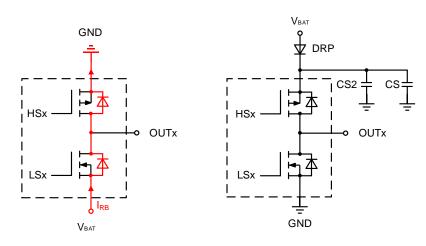





Figure 3. Reverse Polarity Protection

### HALF-BRIDGE OUTPUTS

The half-bridge outputs of the SiLM94108C-AQ are intended to drive motor loads. These outputs can either be driven continuously or PWM enabled via SPI.

#### Half-bridge Operation with Continuous Mode

If the outputs are driven continuously via SPI, for example HS1 and LS2 used to drive a motor, then the following suggested SPI commands shall be sent:

- Activate HS1: Bit HB1\_HS\_EN in HB\_ACT\_1\_CTRL register •
- Activate LS2: Bit HB2 LS EN in HB ACT 1 CTRL register

#### Half-bridge Operation with PWM Enabled

All half-bridge outputs of the SiLM94108C-AQ are capable of PWM operation. They can either be used to drive an inductive load (e.g. DC brush motor) or optionally a resistive load (e.g. LED). Each half-bridge output has been allocated a maximum of three PWM channels with individual duty cycle settings with 8-bit resolution. Each channel is further mapped to a maximum of four PWM frequency options, i.e. 80Hz, 100Hz, 200Hz and 2kHz. This feature enables a highly flexible PWM operation while driving loads with varying control profiles.

PWM frequency and duty cycle can be changed on demand during PWM operation of the desired half-bridge output. Glitches on the PWM output waveform, which may arise as a result of on-demand changes in PWM operation, will be prevented by the internal logic circuitry.

When operating with motor loads, active free-wheeling configuration is available via SPI.

Note: Active free-wheeling is effectively applied if the selected duty cycle corresponds to turn-on times of the HS and the LS, which are longer than the sum of the cross conduction times  $t_{DHL} + t_{DLH}$ .

| Control<br>Register:<br>HBx_MOD<br>En (n=0,1) | PWM Frequency<br>80Hz (Control<br>Register:<br>PWM_CH_FREQ_CT<br>RL) | PWM Frequency<br>100Hz (Control<br>Register:<br>PWM_CH_FREQ_CT<br>RL) | PWM Frequency<br>200Hz (Control<br>Register:<br>PWM_CH_FREQ_CT<br>RL) | PWM Frequency<br>2000Hz (Control<br>Register:<br>OVP2_2k_CTRL) |
|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|
| PWM                                           | PWM_CH1_FREQ_n                                                       | PWM_CH1_FREQ_n                                                        | PWM_CH1_FREQ_n                                                        | PWM_CH1_2k Bit                                                 |
| Channel 1                                     | (n=0,1) Bit '01B'                                                    | (n=0,1) Bit '10B'                                                     | (n=0,1) Bit '11B'                                                     | '1B'                                                           |
| PWM                                           | PWM_CH2_FREQ_n                                                       | PWM_CH2_FREQ_n                                                        | PWM_CH2_FREQ_n                                                        | PWM_CH2_2k Bit                                                 |
| Channel 2                                     | (n=0,1) Bit '01B'                                                    | (n=0,1) Bit '10B'                                                     | (n=0,1) Bit '11B'                                                     | '1B'                                                           |
| PWM                                           | PWM_CH3_FREQ_n                                                       | PWM_CH3_FREQ_n                                                        | PWM_CH3_FREQ_n                                                        | PWM_CH3_2k Bit                                                 |
| Channel 3                                     | (n=0,1) Bit '01B'                                                    | (n=0,1) Bit '10B'                                                     | (n=0,1) Bit '11B'                                                     | '1B'                                                           |

Table 1. PWM capability and frequency selection per half-bridge output

#### Inductive Load

Figure 4 shows an application with OUT1 and OUT2 driving a DC brush motor. With this configuration, HS1 is permanently driven while LS2 is driven in PWM operation. HS2 serves to actively free-wheel (FW) the motor current load, reducing the power dissipation of the device.

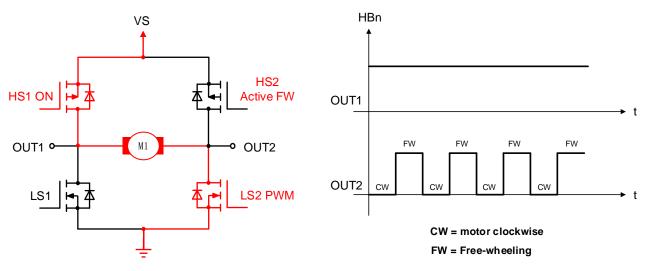



Figure 4. PWM operation on OUT 2

Assuming HBx Mode=00 and both HSx and LSx are considered off (tri-state). The suggested SPI control commands for proper PWM operation are:

- Configure the frequency to 00 (PWM is stopped and off) for selected PWM channel
- Assign an appropriate PWM channel for selected half-bridge output in HB\_MODE\_CTRL register
- Configure the duty cycle of the selected half-bridge output in PWM\_DC\_CTRL register
- Select the PWM frequency in PWM\_CH\_FREQ\_CTRL or OVP2\_2k\_CTRL register to begin the PWM period
- Activate the channel to be driven in PWM operation: HSn or LSn in the HB\_ACT\_CTRL register

Careful attention should be paid to the free-wheeling configuration of the half-bridge required to be driven in PWM operation. For example, in the event a high-side channel is activated and assigned a PWM channel, and active free-wheeling is selected, but a frequency mode of '00' (PWM is stopped and off) is configured in the PWM\_CH\_FREQ\_CTRL register, then the respective high-side channel will be configured low and the adjacent low-side channel within the half-bridge will be enabled. This is a result of enabling active free-wheeling.

#### **Protection and Diagnosis**

The SiLM94108C-AQ is equipped with an SPI interface to control and diagnose the state of the half-bridge drivers. This device has embedded protective functions which are designed to prevent IC destruction under fault conditions described in the following sections. Fault conditions are treated as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. Once the fault occur, the nFAULT pin is pull low(Only SiLM94108F).

The following table provides a summary of fault conditions, protection mechanisms and recovery states embedded in the SiLM94108C-AQ device.



#### Table 2. Summary of diagnosis and monitoring of outputs

| Fault<br>Condition                                    | Error Flag<br>(EF)<br>Behaviour | Error Bit: Status Register                                                                                                                                                                                                                                                 | Output<br>Protection<br>Mechanism                                                                                                                                       | Output<br>Error<br>State | nFAULT<br>pin | Output and Error<br>Flag (EF) Recovery                                                                                                                                                                       |  |
|-------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Overcurrent                                           | Latch                           | <ol> <li>Load Error bit, LE (bit 6) in<br/>SYS_DIAG 1: Global Status 1<br/>Register</li> <li>Localized error for each HS<br/>and LS channel of half-bridge,<br/>HBn_HS_OC and HBn_LS_OC<br/>bits in SYS_DIAG_2,<br/>SYS_DIAG_3, SYS_DIAG_4<br/>status registers</li> </ol> | S_DIAG 1: Global Status 1<br>gister<br>Localized error for each HS<br>d LS channel of half-bridge,<br>n_HS_OC and HBn_LS_OC<br>s in SYS_DIAG_2,<br>S_DIAG_3, SYS_DIAG_4 |                          |               |                                                                                                                                                                                                              |  |
| Open load                                             | Latch                           | <ol> <li>Load Error bit, LE (bit 6) in<br/>SYS_DIAG 1: Global Status 1<br/>Register</li> <li>Localized error for each HS<br/>and LS channel of half-bridge,<br/>HBn_HS_OL and HBn_LS_OL<br/>bits in SYS_DIAG_5,<br/>SYS_DIAG_6, SYS_DIAG_7<br/>status registers</li> </ol> | None                                                                                                                                                                    | No state<br>change       | Low           | An open load<br>detection does not<br>change the state of<br>the output.<br>EF to be cleared.                                                                                                                |  |
| Temperatur<br>e pre-<br>warning                       | Latch                           | Global error bit 1, TPW in<br>SYS_DIAG_1: Global Status 1<br>register                                                                                                                                                                                                      | None                                                                                                                                                                    | No state<br>change       | Low           | Not applicable                                                                                                                                                                                               |  |
| Temperatur<br>e shutdown                              | Latch                           | Global error bit 2, TSD in<br>SYS_DIAG_1: Global Status 1<br>register                                                                                                                                                                                                      | All outputs<br>shutdown and<br>latched.                                                                                                                                 | High-Z                   | Low           | Half-bridge control bits<br>remain set despite<br>error, however the<br>output stage is<br>shutdown. Clear EF to<br>reactivate output<br>stage.                                                              |  |
| Power<br>supply<br>failure due to<br>undervoltag<br>e | Latch                           | Global error bit 5, VS_UV in<br>SYS_DIAG_1: Global Status 1<br>register                                                                                                                                                                                                    | All outputs<br>shutdown and<br>automatically<br>recovers.                                                                                                               | High-Z                   | Low           | Half-bridge control bits<br>remain set despite<br>error, however the<br>output stage is<br>shutdown. They will<br>automatically be<br>reactivated once the<br>power supply<br>recovers. EF to be<br>cleared. |  |
| Power<br>supply<br>failure due to<br>overvoltage      | Latch                           | Global error bit 4, VS_OV in<br>SYS_DIAG_1: Global Status 1<br>register                                                                                                                                                                                                    | All outputs<br>shutdown and<br>automatically<br>recover                                                                                                                 | High-Z                   | Low           | Half-bridge control bits<br>remain set despite<br>error, however the<br>output stage is<br>shutdown. They will<br>automatically be<br>reactivated once the<br>power supply<br>recovers. EF to be<br>cleared. |  |

#### Short Circuit of Output to Supply or Ground

The high-side switches are protected against short to ground whereas the low-side switches are protected against short to supply.

The high-side and low-side power switches will enter into an over-current condition if the current within the switch exceeds the overcurrent shutdown detection threshold,  $I_{SD}$ . Upon detection of the  $I_{SD}$  threshold, an overcurrent shutdown filter,  $t_{dSD}$  is begun. As the current rises beyond the threshold  $I_{SD}$ , it will be limited by the current limit threshold,  $I_{LIM}$ . Upon expiry of the overcurrent shutdown filter time, the affected power switch is latched off and the corresponding error bit, HBn\_HS\_OC or HBn\_LS\_OC is set and latched. See Figure 5 and Figure 6 for more detail.

A global load error bit, LE, contained in the global status register, SYS\_DIAG\_1, is also set for ease of error scanning by the application software. The power switch remains deactivated as long as the error bit is set.

To resume normal functionality of the power switch (in the event the overcurrent condition disappears or to verify if the failure still exists) the microcontroller shall clear the error bit in the respective status register to reactivate the desired power switch.

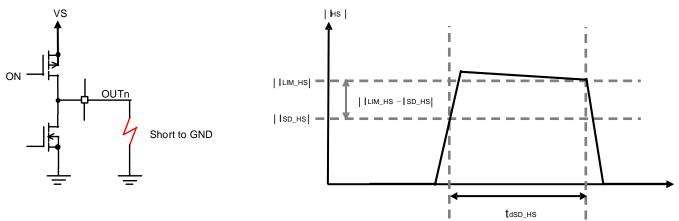



Figure 5. High-Side Switch - Short Circuit and Overcurrent Protection

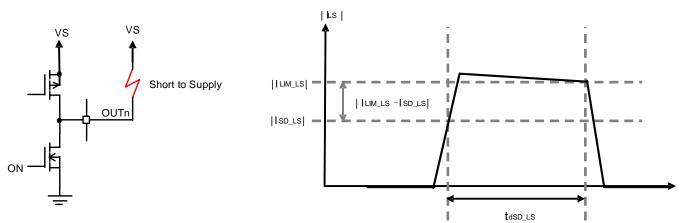



Figure 6. Low-Side Switch - Short Circuit and Overcurrent Protection

| Table 3. Control and Status register bit state in the event of an overcurrent condition for an activated power switch |
|-----------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------|

| Register<br>Type | Register Name                  | Bit Name               | Before<br>Overcurrent | During<br>Overcurrent | After<br>Overcurrent                            |
|------------------|--------------------------------|------------------------|-----------------------|-----------------------|-------------------------------------------------|
|                  |                                |                        | Bit State             | Bit State             | Bit State                                       |
| Control          | HB_ACT_CTRL_n                  | HBn_HS_EN<br>HBn_LS_EN | 1                     | 1                     | 1 (corresponding<br>half-bridge<br>deactivated) |
| Status           | SYS_DIAG_1:<br>Global Status 1 | LE                     | 0                     | 0                     | 1                                               |
| Status           | SYS_DIAG_x<br>where x=2,3,4    | HBn_HS_OC<br>HBn_LS_OC | 0                     | 0                     | 1                                               |

#### **Cross-Current**

In bridge configurations the high-side and low-side power transistors are ensured never to be simultaneously "ON" to avoid cross currents. This is achieved by integrating delays in the driver stage of the power outputs to create a dead-time between switching off of one power transistor and switching on of the adjacent power transistor within

Sillumin Semiconductor Co., Ltd. – <u>www.sillumin.com</u>

the half-bridge. The dead times,  $t_{DHL}$  and  $t_{DLH}$ , as shown in Figure 7 case 3 and Figure 8 case 3, have been specified to ensure that the switching slopes do not overlap with each other. This prevents a cross conduction event.

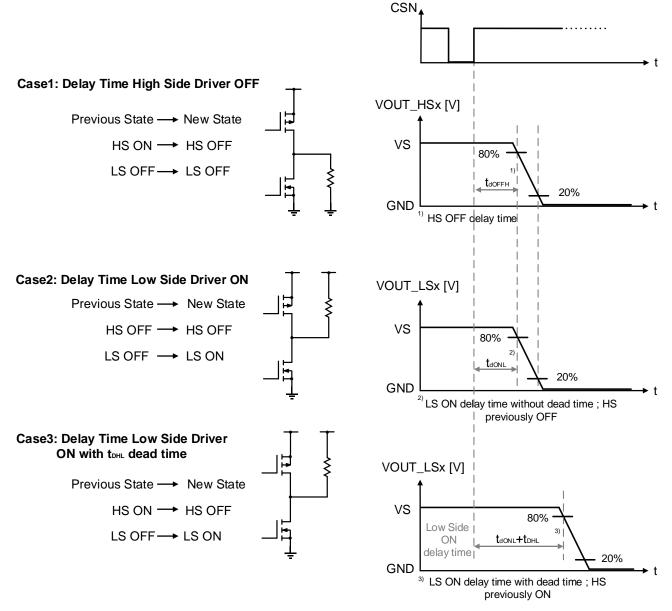
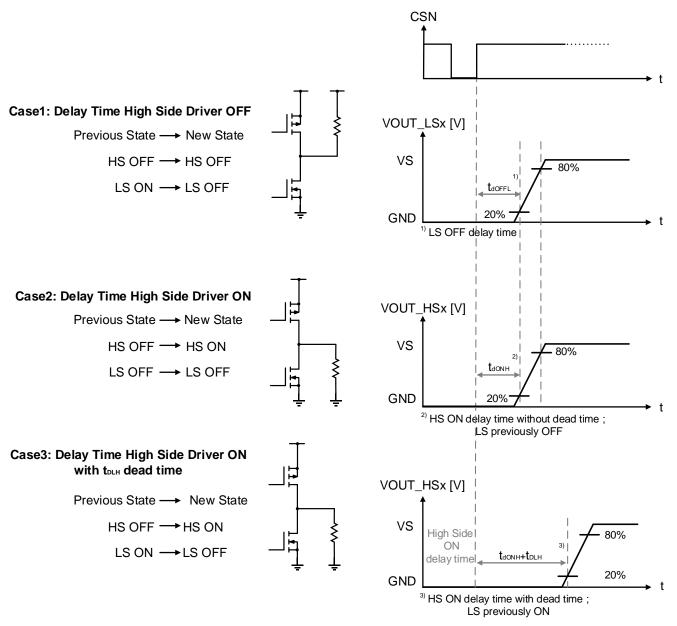
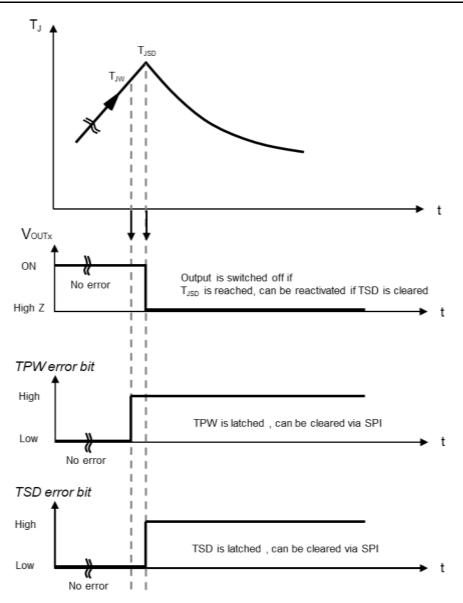
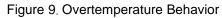



Figure 7. Half bridge outputs switching times - high-side to low-side transition







Figure 8. Half bridge outputs switching times- low-side to high-side transition


#### **Temperature Monitoring**

Temperature sensors are integrated in the power stages. The temperature monitoring circuit compares the measured temperature to the warning and shutdown thresholds. If one or more temperature sensors reach the warning temperature, the temperature pre-warning bit, TPW is set. This bit is latched and can only be cleared via SPI. The outputs stages however remain activated.

If one or more temperature sensors reach the shut-down temperature threshold, all outputs are latched off. The TSD bit in SYS\_DIAG\_1: Global Status 1 is set. All outputs remain deactivated until the TSD bit is cleared. See Figure 9.

To resume normal functionality of the power switch (in the event the overtemperature condition disappears, or to verify if the failure still exists) the microcontroller shall clear the TSD error bit in the status register to reactivate the respective power switch.





| Toble 1 Control on   | d Statua ragiatar hit atata in | overtemperature condition fo | r on activistad neuror euritab |
|----------------------|--------------------------------|------------------------------|--------------------------------|
| Table 4, Conitor and |                                | overtemperature condition fo |                                |
|                      | a claim ogiotor bit claic in   |                              |                                |

| Register | Register Name                  | Bit Name               | T <sub>J</sub> <t<sub>JW</t<sub> | TJ>TJM      | T <sub>J</sub> >T <sub>JSD</sub>     | T <sub>J</sub> <t<sub>JSD-T<sub>JHYS</sub></t<sub>                            |
|----------|--------------------------------|------------------------|----------------------------------|-------------|--------------------------------------|-------------------------------------------------------------------------------|
| Туре     |                                |                        | Bit State                        | Bit State   | Bit State                            | Bit State                                                                     |
| Control  | HB_ACT_CTRL_n                  | HBn_HS_EN<br>HBn_LS_EN | 1                                | 1           | 1(all outputs<br>are latched<br>off) | '1' (outputs are<br>latched off unless<br>error is cleared)                   |
| Status   | SYS_DIAG_1:<br>Global status 1 | TPW                    | 0                                | 1 (latched) | 1 (latched)                          | ʻ0' if error is<br>cleared and T <sub>J</sub> <<br>T <sub>JW</sub> , else ʻ1' |
| Status   | SYS_DIAG_1:<br>Global status 1 | TPD                    | 0                                | 0           | 1 (latched)                          | '0' if error is cleared, else '1'                                             |

#### **Overvoltage and Undervoltage Shutdown**

The power supply rails  $V_S$  and  $V_{DD}$  are monitored for supply fluctuations. The  $V_S$  supply is monitored for under- and over-voltage conditions where as the  $V_{DD}$  supply is monitored for under-voltage conditions.

In the event the supply voltage V<sub>S</sub> drops below the switch off voltage  $V_{UV_OFF}$ , all output stages are switched off, however, the logic information remains intact and uncorrupted. The V<sub>S</sub> under-voltage error bit, VS\_UV, located in SYS\_DIAG\_1: Global Status 1 status register, will be set and latched. If VS rises again and reaches the switch on voltage  $V_{UV_ON}$  threshold, the power stages will automatically be activated. The VS\_UV error bit should be cleared to verify if the supply disruption is still present. See Figure 10.

In the event the supply voltage V<sub>S</sub> rises above the switch off voltage  $V_{OV1\_OFF}$ , all output stages are switched off, The V<sub>S</sub> over-voltage error bit, VS\_OV, located in SYS\_DIAG\_1: Global Status 1 status register, will be set and latched. If V<sub>S</sub> falls again and reaches the switch on voltage  $V_{OV1\_ON}$  threshold, the power stages will automatically be activated. If the EXT\_OVP bit in OVP2\_2k\_CTRL register is set, the above supply voltage V<sub>S</sub> Threshold voltage will be  $V_{OV2\_OFF}$  and  $V_{OV2\_ON}$ . The VS\_OV error bit should be cleared to verify if the overvoltage condition is still present. See Figure 10.

In the event the  $V_{DD}$  logic supply decreases below the undervoltage threshold,  $V_{DD_POffR}$ , the SPI interface shall no longer be functional and the SiLM94108C-AQ will enter reset.

The digital block will be initialized and the output stages are switched off to High impedance. The undervoltage reset is released once  $V_{DD}$  voltage levels are above the undervoltage threshold,  $V_{DD_POR}$ .

The reset event is reported in SYS\_DIAG1 by the NPOR bit (NPOR = 0) once the SiLM94108C-AQ is in normal mode (EN = High;  $V_{DD} > V_{DD_{-}POR}$ ).

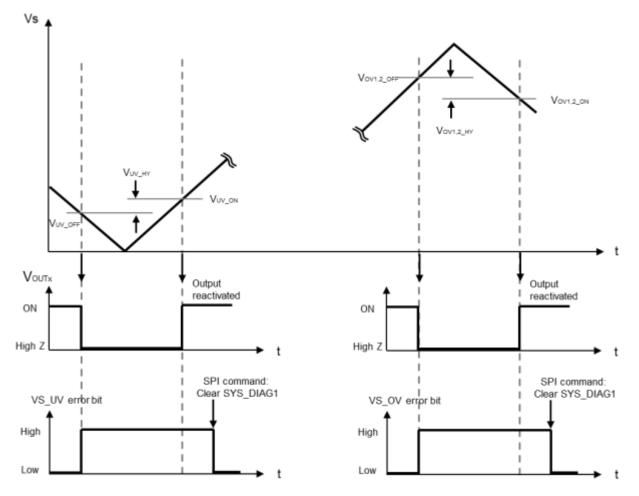



Figure 10. Output behavior during under- and overvoltage Vs condition



#### **Open Load**

Both high-side and low-side switches of the half-bridge power outputs are capable of detecting an open load in their activated state. If a load current lower than the open load detection threshold, IoLD for at least toLD is detected at the activated switch, the corresponding error bit, HBn\_HS\_OL or HBn\_LS\_OL is set and latched.

A global load error bit, LE, in the global status register, SYS\_DIAG\_1: Global Status 1, is also set for ease of error scanning by the application software. The half-bridge output however, remains activated.

The microcontroller must clear the error bit in the respective status register to determine if the open load is still present or disappeared.

The SiLM94108C-AQ device also includes a negative-current OLD mode for power stages used in active freewheeling. The negative current can flow either through the body diode of FET or the FET itself depending on whether or not the channel is configured for synchronous rectification. The open load detection of free-wheeling FET in active mode is eliminated by enabling the Active Free Wheeling OLD setting (DIS\_OL\_NEG = 1 in OLDN\_DT\_SR\_CTRL register).

### SERIAL PERIPHERAL INTERFACE (SPI)

The SiLM94108C-AQ has a 16-bit SPI interface for output control and diagnostics. This section describes the SPI protocol, the control and status registers.

#### **SPI** Description

The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input SCLK provided by the microcontroller. SCLK must be Low during CSN falling edge (Clock Polarity = 0). The SPI incorporates an in-frame response: the content of the addressed register is shifted out at SDO within the same SPI frame (see Figure 17 and Figure 19). The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), Low active. After the CSN input returns from Low to High, the word that has been read is interpreted according to the content. The SDO output switches to tri-state status (High impedance) at this point, thereby releasing the SDO bus for other use. The state of SDI is shifted into the input register with every falling edge on SCLK. The state of SDO is shifted out of the output register at every rising edge on SCLK (Clock Phase = 1). The SPI protocol of the SiLM94108C-AQ is compatible with independent slave configuration and with daisy chain. Daisy chaining is applicable to SPI devices with the same protocol.

Writing, clearing reading is done byte wise. The SPI configuration and status bits are not cleared automatically by the device and therefore must be cleared by the microcontroller, e.g. if the TSD bit was set due to over temperature (refer to the respective register description for detailed information).

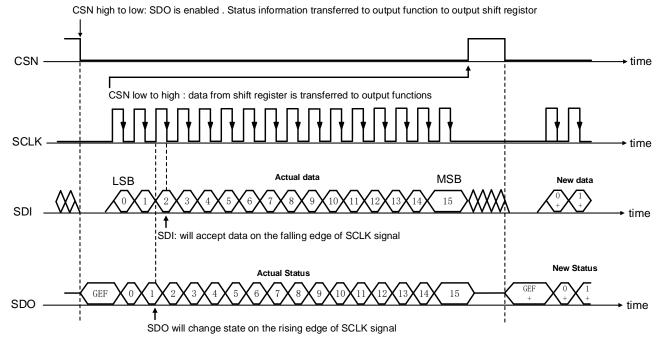
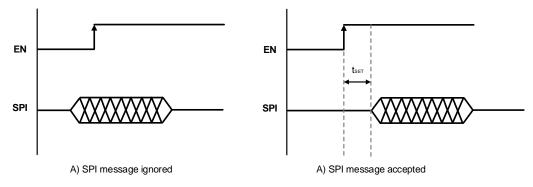




Figure 11. SPI Data Transfer Timing

SPI messages are only recognized if a minimum set time, t<sub>SET</sub>, is observed upon rising edge of the EN pin (Figure 12).





Sillumin Semiconductor Co., Ltd. - <u>www.sillumin.com</u>

### SiLM94108C-AQ

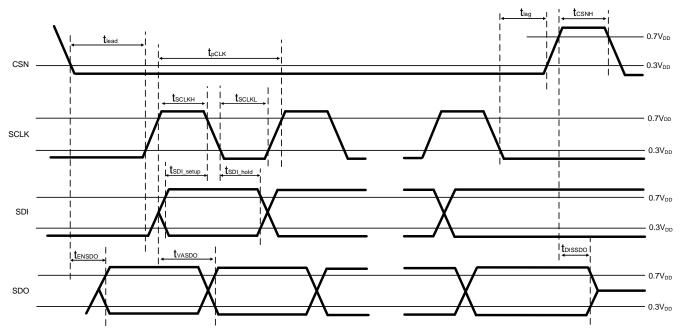



Figure 13. SPI Data Timing

#### **Global Error Flag**

A logic OR combination between Global Error Flag (GEF) and the signal present on SDI is reported on SDO between a CSN falling edge and the first SCLK rising edge (Figure 11). GEF is set if a fault condition is detected or if the device comes from a Power On Reset (POR).

Note: The SDI pin of all devices in daisy chain or non-daisy chain mode must be Low at the beginning of the SPI frame (between the CSN falling edge and the first SCLK rising edge).

It is possible to check if the SiLM94108C-AQ has detected a fault by reading the GEF without SPI clock pulse (Figure 14).

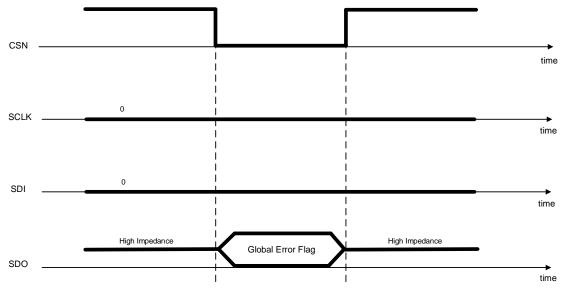



Figure 14. SDO behaviour with 0-clock cycle

#### **Global Status Register**

The SDO shifts out during the first eight SCLK cycles the Global Status Register. This register provides an overview of the device status. All failures conditions are reported in this byte:

SPI protocol error (SPI\_ERR)

Sillumin Semiconductor Co., Ltd. - www.sillumin.com



· Load Error (LE bit): logical OR between Open Load (OL) and Overcurrent (OC) failures

- VS Undervoltage (VS\_UV bit)
- VS Overvoltage (VS\_OV bit)
- Negated Power ON Reset (NPOR bit)
- Temperature Shutdown (TSD bit)
- Temperature Pre-Warning (TPW bit)

Note: The Global Error Flag is a logic OR combination of every bit of the Global Status Register with the exception of NPOR: GEF = (SPI\_ERR) OR (LE) OR (VS\_UV) OR (VS\_OV) OR (NOT(NPOR)) OR (TSD) OR (TPW).

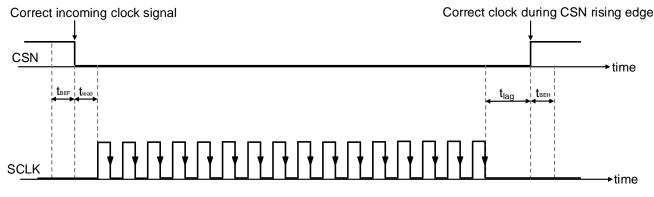
The following table shows how failures are reported in the Global Status Register and by the Global Error Flag.

| Type of Error                  | Failure reported in the Global Status Register | Global Error Flag |
|--------------------------------|------------------------------------------------|-------------------|
| SPI protocol error             | SPI_ERR = 1                                    | 1                 |
| Open load or Overcurrent       | LE = 1                                         | 1                 |
| VS Undervoltage                | VS_UV = 1                                      | 1                 |
| VS Overvoltage                 | VS_OV = 1                                      | 1                 |
| Power ON Reset                 | NPOR = 0                                       | 1                 |
| Thermal Shutdown               | TSD = 1                                        | 1                 |
| Thermal Warning                | TPW = 1                                        | 1                 |
| No Error and no Power ON Reset | SPI_ERR = 0<br>LE = 0                          | 0                 |
|                                | VS_UV = 0                                      |                   |
|                                | $VS_OV = 0$                                    |                   |
|                                | NPOR = 1<br>TSD = 0                            |                   |
|                                | TPW = 0                                        |                   |

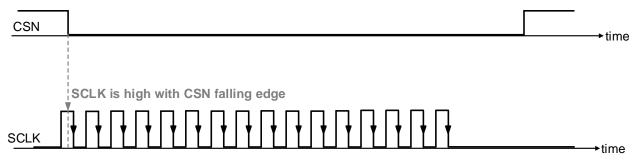
Note: The default value (after Power ON Reset) of NPOR is 0, therefore the default value of GEF is 1.

#### SPI Protocol Error Detection

The SPI incorporates an error flag in the Global Status Register (SPI\_ERR, Bit7) to supervise and preserve the data integrity. If an SPI protocol error is detected during a given frame, the SPI\_ERR bit is set in the next SPI communication.


The SPI\_ERR bit is set in the following error conditions:

- the number of SCLK clock pulses received when CSN is Low is not 0, or is not a multiple of 8 and at least 16
- the microcontroller sends an SPI command to an unused address. In particular, SDI stuck to High is reported in the SPI\_ERR bit
- the LSB of an address byte is not set to 1. In particular, SDI stuck to Low is reported in the SPI\_ERR bit
- the Last Address Bit Token (LABT, bit 1 of the address byte) in independent slave configuration is not set to 1
  the LABT bit of the last address byte in daisy chain configuration is not set to 1
- a clock polarity error is detected (see Figure 15 Case 2 and Case 3): the incoming clock signal was High during CSN rising or falling edges.


For a correct SPI communication:

- SCLK must be Low for a minimum tBEF before CSN falling edge and tlead after CSN falling edge
- SCLK must be Low for a minimum  $t_{lag}$  before CSN rising edge and  $t_{BEH}$  after CSN rising edge

#### Case 1: Correct SCLK signal



#### Case 2: Erroneous incoming clock signal



#### Case 3: Erroneous clock signal during CSN rising edge

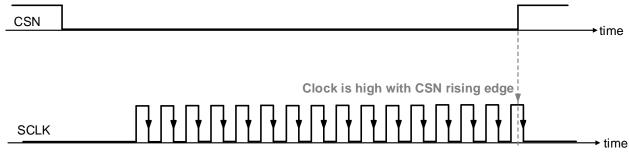



Figure 15. Clock Polarity Error

#### SPI with Independent Slave Configuration

In an independent slave configuration, the microcontroller controls the CSN of each slave individually (Figure 16).

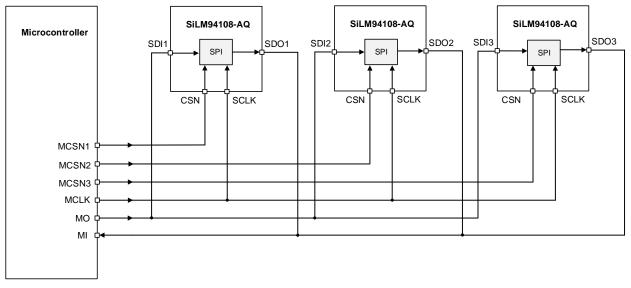



Figure 16. SPI with independent slave configuration

Each SPI communication starts with one address byte followed by one data byte (Figure 17). The LSB of the data byte must be set to '1'. The address bytes specifies:

- The type of operation: READ ONLY (OP bit =0) or READ/ WRITE (OP bit = 1) of the configuration bits, and READ ONLY (OP bit =0) or READ & CLEAR (OP bit = 1) of the status bits.
- The target register address (A[6:2])

The Last Address Byte Token bit (LABT, Bit1 of the address byte) must be set to 1, as no daisy chain configuration is used.

While the microcontroller sends the address byte on SDI, SDO shifts out GEF and the Global Status Register.

A further data byte (Bit15...8) is allocated to either configure the half-bridges or retrieve status information of the SiLM94108C-AQ.

|    | LSB |             |    | Addr | ess Byte | )  |    |    |    |  |
|----|-----|-------------|----|------|----------|----|----|----|----|--|
|    | 0   | 1           | 2  | 3    | 4        | 5  | 6  | 7  | 8  |  |
| DI | 1   | LABT<br>= 1 | A2 | A3   | A4       | A5 | A6 | OP | D0 |  |
|    |     |             |    |      |          |    |    | -  |    |  |

| Data Byte |                    |    |    |    |    |    |    |  |  |  |
|-----------|--------------------|----|----|----|----|----|----|--|--|--|
| 8         | 8 9 10 11 12 13 14 |    |    |    |    |    |    |  |  |  |
| D0        | D1                 | D2 | D3 | D4 | D5 | D6 | D7 |  |  |  |

Register content of the selected address

|     | LSB |     | C   | Global S | tatus Re | gister |    |             |   | Data Byte (Response) MSB |    |    |    |    |    |    |    |
|-----|-----|-----|-----|----------|----------|--------|----|-------------|---|--------------------------|----|----|----|----|----|----|----|
|     | 0   | 1   | 2   | 3        | 4        | 5      | 6  | 7           | 8 | ;                        | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| SD0 | 0   | TPW | TSD | NPOR     | vs_ov    | vs_uv  | LE | SPI_<br>ERR | D | 0                        | D1 | D2 | D3 | D4 | D5 | D6 | D7 |

Time

LSB is sent first in SPI message

Figure 17. SPI Operation Mode with independent slave configuration

The in-frame response characteristic enables the microcontroller to read the contents of the addressed register within the SPI command. See Figure 17.

Sillumin Semiconductor Co., Ltd. - www.sillumin.com

S

#### Daisy Chain Operation

The SiLM94108C-AQ supports daisy chain operation with devices with the same SPI protocol. This section describes the daisy chain hardware configuration with three devices from the SiLM94108C-AQ family (see Figure 18)

The master output (noted MO) is connected to a slave SDI and the first slave SDO is connected to the next slave SDI to form a chain. The SDO of the final slave in the chain will be connected to the master input (MI) to close the loop of the SPI communication frame. In daisy chain configuration, a single chip select, CSN, and clock signal, SCLK, connected in parallel to each slave device, are used by the microcontroller to control or access the SPI devices.

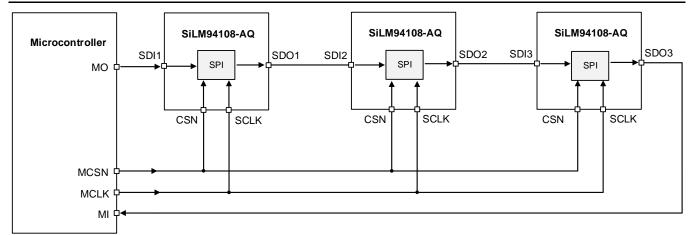
In this configuration, the Master Output must send the address bytes and data bytes in the following order:

- All address bytes must be sent first:
  - Address Byte 1 (for SiLM94108C-AQ\_1) is sent first, followed by Address Byte 2 (for SiLM94108C-AQ\_2) etc,...
  - The LABT bit of the last address byte must be 1, while the LABT bit of all the other address bytes must

be 0

• The data bytes are sent all together once all address bytes have been transmitted: Data Byte 1 (for

SiLM94108C-AQ\_1) is sent first, followed by Data Byte 2 (for SiLM94108C-AQ\_2) etc,...


Note: The signal on the SDI pin of the first IC in daisy chain (and in non-daisy chain mode), must be Low at the beginning of the SPI frame (between CSN falling edge and the first SCLK rising edge). This is because each Global Error Flag in daisy chain operation is implemented in OR logic.

The Master Input (MI), which is connected to the SDO of the last device in the daisy chain receives:

- A logic OR combination of all Global Error Flags (GEF), at the beginning of the SPI frame, between CSN falling edge and the first SCLK rising edge
- The logic OR combination of the GEFs is followed by the Global Status Registers in reverse order. In other words, MI receives first the Global Status Register of the last device of the daisy chain
- Once all Global Status Registers are received, MI receives the response bytes corresponding to the respective
  address and data bytes in reverse order. For example, if the daisy chain consists of three devices with SDO or
  SiLM94108C-AQ\_3 connected to MI, the master receives first the Response Byte 3 of SiLM94108C-AQ\_3
  (corresponding to Address Byte 3 and Data Byte 3) followed by the Response Byte 2 of SiLM94108C-AQ\_2 and
  finally the Response Byte 1 of SiLM94108C-AQ\_1.

An example of an SPI frame with three devices from the SiLM941xy family is shown in Figure 19.

### SiLM94108C-AQ





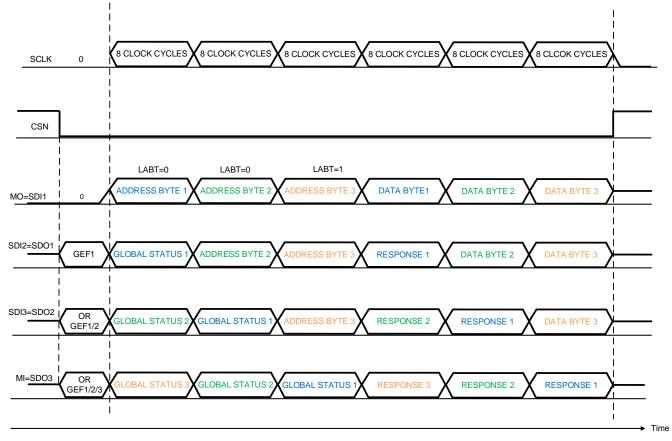



Figure 19. SPI frame with three devices of the SiLM941xy family

Like in the individual slave configuration, it is possible to check if one or several SiLM94108C-AQ have detected a fault condition by reading the logic OR combination of all the Global Error Flags when CSN goes Low without any clock cycle (Figure 20).



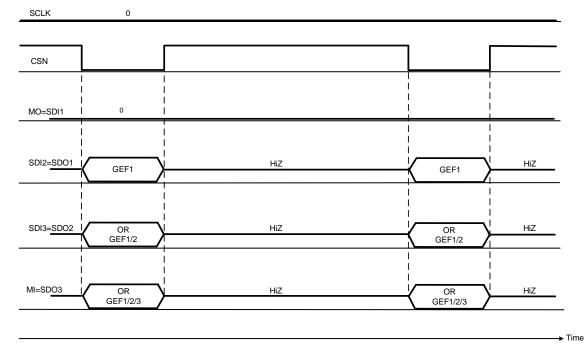
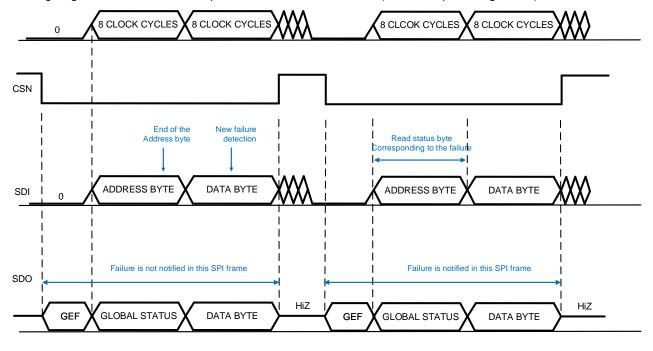




Figure 20. Global Error Flag with zero SCLK clock cycle in daisy chain consisting only of SiLM941xy devices

Note: Some SPI protocol errors such as the LSB of an address byte is wrongly equal to 0, may be reported in the SPI\_ERR bit of another device in the daisy chain. In this case some devices might accept wrong data during the corrupted SPI frame. Therefore, if one of the devices in the daisy chain reports an SPI error, it is recommended to verify the content of the registers of all devices

#### Status Register Change During SPI Communication

If a new failure occurs after the transfer of the data byte(s), i.e. between the end of the last address byte and the CSN rising edge, this failure will be reported in the next SPI frame (see example in Figure 21).



Time

Figure 21. Status register change during transfer of data byte - Example in independent slave configuration

No information is lost, even if a status register is changed during a SPI frame, in particular during a Read and Clear command. For example:

- the microcontroller sends a Read and Clear command to a status register
- the SiLM94108C-AQ detects during the transfer the data byte(s) a new fault condition, which is normally reported in the target status register

The incoming Clear command will be ignored, so that the microcontroller can read the new failure in the subsequent SPI frames.

Data inconsistency between the Global Status Register and the data byte (status register) within the same SPI frame is possible if:

- an open load or overcurrent error is detected during the transfer of the data byte
- the target status register corresponds to the new detected failure

In this case the new failure:

- is not reported in the Global Status Register of the current SPI frame but in the next one
- · is reported in the data byte of the current SPI frame

An example in Figure 22 shows more details.

|     | LSB     | Address Byte |                    |                                        |                                                 | Data Byte |                                                                 |             |                          |          | MSB                                                             |                                  |                            |                     |                    |                              |
|-----|---------|--------------|--------------------|----------------------------------------|-------------------------------------------------|-----------|-----------------------------------------------------------------|-------------|--------------------------|----------|-----------------------------------------------------------------|----------------------------------|----------------------------|---------------------|--------------------|------------------------------|
|     | 0       | 1            | 2                  | 3                                      | 4                                               | 5         | 6                                                               | 7           | 8                        | 9        | 10                                                              | 11                               | 12                         | 13                  | 14                 | 15                           |
| ы   | 1       | LABT<br>= 1  | A2<br>=0           | A3<br>=1                               | A4<br>=1                                        | A5<br>=0  | A6<br>=1                                                        | OP<br>=0    | x                        | x        | x                                                               | x                                | x                          | x                   | x                  | x                            |
|     |         |              |                    |                                        | on HS o<br>dress by                             |           |                                                                 |             |                          | → .      | Target s                                                        | tatus reį                        | gister: (                  | OC error            | of HB ′            | 1-4                          |
|     | LSB     |              |                    | Global S                               | tatus Re                                        | egister   |                                                                 |             |                          |          | Respo                                                           | nse Data                         | a Byte: S                  | SYS_DIA             | G2                 | MSB                          |
|     | 0       | 1            | 2                  | 3                                      | 4                                               | 5         | 6                                                               | 7           | 8                        | 9        | 10                                                              | 11                               | 12                         | 13                  | 14                 | 15                           |
| o   | 0       | TPW          | TSD                | NPOR                                   | vs_ov                                           | vs_uv     | LE<br>=0                                                        | SPI_<br>ERR | D0<br>=0                 | D1<br>=1 | D2<br>=0                                                        | D3<br>=0                         | D4<br>=0                   | D5<br>=0            | D6<br>=0           | D7<br>=0                     |
|     |         | rt the ne    |                    | r Open L<br>current f                  |                                                 |           |                                                                 | -           | etween Gl<br>Irget Statu |          | Overo<br>tus                                                    |                                  | reports<br>ailure or       | n the HS            | of HB '            | 1<br>Tim                     |
| s n | ot repo |              | w Over             |                                        | failure                                         |           | Regist                                                          | ter and ta  |                          | s Regist | Overo<br>tus<br>ter                                             | current f                        |                            |                     | of HB <sup>2</sup> |                              |
| s n | ot repo | rt the ne    | w Over             |                                        | failure                                         |           | Regist                                                          | ter and ta  | ırget Statu              | s Regist | Overo<br>tus<br>ter                                             | current f                        |                            |                     | of HB <sup>2</sup> |                              |
| s n | Frame   | rt the ne    | w Over             | current f                              | failure                                         | PI frame: | Regist                                                          | ter and ta  | DIAG2(OC                 | s Regist | Overo<br>tus<br>ter                                             | )<br>Data                        |                            |                     |                    | Tin                          |
| s n | Frame   | 2(new)       | 2                  | Addr<br>3                              | New SF                                          | PI frame: | Regist                                                          | ead SYS_    | _DIAG2(OC                | error o  | Overo<br>tus<br>ter<br>f HB 1-4                                 | )<br>Data                        | Byte                       | 13                  | 14                 | Tim<br>MSB<br>15             |
| s n | Frame   | 2(new)       | w Over             | Addr                                   | New SI                                          | PI frame: | Regis                                                           | ead SYS_    | DIAG2(OC                 | s Regist | Overo                                                           | )<br>Data                        | Byte                       | h the HS            |                    | Tin                          |
| s n | Frame   | 2(new)       | 2<br>A2            | Addr<br>3<br>A3                        | New Sf<br>ess Byte<br>4<br>A4                   | PI frame: | Regisi<br>: e.g. R(<br>6<br>A6                                  | ead SYS_    | _DIAG2(OC                | s Regist | Overo<br>tus<br>ter<br>f HB 1-4                                 | )<br>Data<br>11<br>X             | Byte<br>12<br>X            | 13<br>X             | 14<br>X            | Tin<br>MSB<br>15<br>X        |
| s n | Frame   | 2(new)       | 2<br>2<br>42<br>=0 | Addr<br>3<br>A3<br>=1                  | New Sf<br>ess Byte<br>4<br>A4                   | PI frame: | Regisi<br>: e.g. R(<br>6<br>A6                                  | ead SYS_    | _DIAG2(OC                | s Regist | Overo<br>tus<br>ter<br>f HB 1-4<br>10<br>X<br>rget stat         | )<br>Data<br>11<br>X<br>us regis | Byte<br>12<br>X<br>ter: OC | 13<br>X             | 14<br>X<br>HB 1-4  | Tin<br>MSB<br>15<br>X        |
| s n | Frame   | 2(new)       | 2<br>2<br>42<br>=0 | Addr<br>3<br>A3<br>=1                  | New Sł<br>ess Byte<br>4<br>A4<br>=1             | PI frame: | Regisi<br>: e.g. R(<br>6<br>A6                                  | ead SYS_    | _DIAG2(OC                | s Regist | Overo<br>tus<br>ter<br>f HB 1-4<br>10<br>X<br>rget stat         | )<br>Data<br>11<br>X<br>us regis | Byte<br>12<br>X<br>ter: OC | 13<br>X<br>error of | 14<br>X<br>HB 1-4  | Tim<br>MSB<br>15<br>X        |
| s n | Frame   | 2(new)       | 2<br>2<br>42<br>=0 | Addr<br>3<br>A3<br>=1<br>Global S<br>3 | New SI<br>ess Byte<br>4<br>A4<br>=1<br>tatus Re | PI frame: | Regist           : e.g. R           6           A6           =1 | ead SYS_    | DIAG2(OC                 | s Regist | Overo<br>tus<br>ter<br>f HB 1-4<br>10<br>X<br>rget stat<br>Resp | )<br>Data<br>11<br>X<br>us regis | Byte<br>12<br>X<br>ter: OC | 13<br>X<br>error of | 14<br>X<br>HB 1-4  | Tim<br>MSB<br>15<br>X<br>MSB |

Figure 22. Example of inconsistency between Global Error Flag and Status Register when a status bit is changed during the transfer of an address byte

#### SPI Bit Mapping

The SPI Registers have been mapped as shown in Figure 23 and Figure 24 respectively. The control registers are READ/WRITE registers. To set the control register to READ, bit 7 of the address byte (OP bit) must be programmed to '0', otherwise '1' for WRITE. The status registers are READ/CLEAR registers. To CLEAR any Status Register, bit 7 of the address byte must be set to '1', otherwise '0' for READ.

| BIT       | Data Bits 15-8                     | A7                    | A6    | A5 | A4 | A3 | A2 | A1   | A0 |
|-----------|------------------------------------|-----------------------|-------|----|----|----|----|------|----|
|           | Configuration & Status Information | Access type<br>A7(OP) | A6-A0 |    |    |    |    |      |    |
| TYPE      | 8 Data Bits [D7D0]                 | 8 Address Bits [A7A0] |       |    |    |    |    |      |    |
| CONTROL   | HB_ACT_1_CTRL                      | read/write            | 0     | 0  | 0  | 0  | 0  | LABT | 1  |
| REGISTERS | HB_ACT_2_CTRL                      | read/write            | 1     | 0  | 0  | 0  | 0  | LABT | 1  |
|           | HB_MODE_1_CTR                      | read/write            | 1     | 1  | 0  | 0  | 0  | LABT | 1  |
|           | HB_MODE_2_CTR                      | read/write            | 0     | 0  | 1  | 0  | 0  | LABT | 1  |
|           | PWM_CH_FREQ_CTR                    | read/write            | 0     | 1  | 1  | 0  | 0  | LABT | 1  |
|           | PWM1_DC_CTRL                       | read/write            | 1     | 1  | 1  | 0  | 0  | LABT | 1  |
|           | PWM2_DC_CTRL                       | read/write            | 0     | 0  | 0  | 1  | 0  | LABT | 1  |
|           | PWM3_DC_CTRL                       | read/write            | 1     | 0  | 0  | 1  | 0  | LABT | 1  |
|           | CONFIG_CTRL                        | read                  | 1     | 1  | 0  | 0  | 1  | LABT | 1  |
|           | OVP2_2k_CTRL                       | read/write            | 0     | 0  | 0  | 1  | 1  | LABT | 1  |
|           | Reserved                           | read/write            | 1     | 0  | 0  | 1  | 1  | LABT | 1  |
|           | OLDN_DT_SR_CTRL                    | read/write            | 0     | 0  | 1  | 1  | 1  | LABT | 1  |
|           | Reserved                           | read/write            | 1     | 0  | 1  | 1  | 1  | LABT | 1  |
| STATUS    | SYS_DIAG_1 : Global status 1       | read/clear            | 0     | 0  | 1  | 1  | 0  | LABT | 1  |
| REGISTERS | SYS_DIAG_2: OP<br>ERROR_1_STAT     | read/clear            | 1     | 0  | 1  | 1  | 0  | LABT | 1  |
|           | SYS_DIAG_3: OP<br>ERROR_2_STAT     | read/clear            | 0     | 1  | 1  | 1  | 0  | LABT | 1  |
|           | SYS_DIAG_5: OP<br>ERROR_4_STAT     | read/clear            | 0     | 0  | 0  | 0  | 1  | LABT | 1  |
|           | SYS_DIAG_6:OP<br>ERROR_5_STAT      | read/clear            | 1     | 0  | 0  | 0  | 1  | LABT | 1  |

Figure 23. SiLM94108C-AQ SPI Register mapping

### SiLM94108C-AQ

| BIT                                    | 15              | 14              | 13                 | 12                 | 11                 | 10                 | 9                  | 8                  |  |
|----------------------------------------|-----------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
|                                        | D7              | D6              | D5                 | D4                 | D3                 | D2                 | D1                 | D0                 |  |
| CONTROL REGISTERS                      |                 |                 |                    |                    |                    |                    |                    |                    |  |
| HB_ACT_1_<br>CTRL                      | HB4_HS<br>_EN   | HB4_LS<br>_EN   | HB3_HS_E<br>N      | HB3_LS_E<br>N      | HB2_HS_E<br>N      | HB2_LS_E<br>N      | HB1_HS_E<br>N      | HB1_LS_E<br>N      |  |
| HB_ACT_2_<br>CTRL                      | HB8_HS<br>_EN   | HB8_LS<br>_EN   | HB7_HS_E<br>N      | HB7_LS_E<br>N      | HB6_HS_E<br>N      | HB6_LS_E<br>N      | HB5_HS_E<br>N      | HB5_LS_E<br>N      |  |
| HB_MODE_<br>1_CTR                      | HB4_M<br>ODE_1  | HB4_M<br>ODE_0  | HB3_MOD<br>E_1     | HB3_MOD<br>E_0     | HB2_MOD<br>E_1     | HB2_MOD<br>E_0     | HB1_MOD<br>E_1     | HB1_MOD<br>E_0     |  |
| HB_MODE_<br>2_CTR                      | HB8_M<br>ODE_1  | HB8_M<br>ODE_0  | HB7_MOD<br>E_1     | HB7_MOD<br>E_0     | HB6_MOD<br>E_1     | HB6_MOD<br>E_0     | HB5_MOD<br>E_1     | HB5_MOD<br>E_0     |  |
| PWM_CH_F<br>REQ_CTR                    | FM_CLK<br>_MOD1 | FM_CLK<br>_MOD0 | PWM_CH3<br>_FREQ_1 | PWM_CH3<br>_FREQ_0 | PWM_CH2<br>_FREQ_1 | PWM_CH2<br>_FREQ_0 | PWM_CH1<br>_FREQ_1 | PWM_CH1<br>_FREQ_0 |  |
| PWM1_DC_<br>CTRL                       |                 |                 |                    | PWM1_D             | C_CTRL<7:0>        |                    | I                  | <u> </u>           |  |
| PWM2_DC_<br>CTRL                       |                 |                 |                    | PWM2_D             | C_CTRL<7:0>        |                    |                    |                    |  |
| PWM3_DC_<br>CTRL                       |                 |                 |                    | PWM3_D             | C_CTRL<7:0>        |                    |                    |                    |  |
| CONFIG_C<br>TRL                        | Reserve<br>d    | Reserve<br>d    | Reserved           | Reserved           | DEV_ID3            | DEV_ID2            | DEV_ID1            | DEV_ID0            |  |
| OVP2_2k_C<br>TRL                       | EXT_OV<br>P     | PWM_C<br>H3_2k  | PWM_CH2<br>_2k     | PWM_CH1<br>_2k     | Reserved           | Reserved           | Reserved           | Reserved           |  |
| Reserved                               | Reserve<br>d    | Reserve<br>d    | Reserved           | Reserved           | Reserved           | Reserved           | Reserved           | Reserved           |  |
| OLDN_DT_<br>SR_CTRL                    | Reserve<br>d    | Reserve<br>d    | DIS_OL_N<br>EG     | DTIME_SE<br>L      | Reserved           | SR_2               | SR_1               | SR_0               |  |
| Reserved                               | Reserve<br>d    | Reserve<br>d    | Reserved           | Reserved           | Reserved           | Reserved           | Reserved           | Reserved           |  |
| STATUS REG                             | ISTERS          |                 |                    |                    |                    |                    |                    |                    |  |
| SYS_DIAG_<br>1 : Global<br>status 1    | SPI_ER<br>R     | LE              | VS_UV              | VS_OV              | NPOR               | TSD                | TPW                | Reserved           |  |
| SYS_DIAG_<br>2:OP<br>ERROR_1_<br>STAT  | HB4_HS<br>_OC   | HB4_LS<br>_OC   | HB3_HS_<br>OC      | HB3_LS_O<br>C      | HB2_HS_<br>OC      | HB2_LS_O<br>C      | HB1_HS_<br>OC      | HB1_LS_O<br>C      |  |
| SYS_DIAG_<br>3: OP<br>ERROR_2_<br>STAT | HB8_HS<br>_OC   | HB8_LS<br>_OC   | HB7_HS_<br>OC      | HB7_LS_O<br>C      | HB6_HS_<br>OC      | HB6_LS_O<br>C      | HB5_HS_<br>OC      | HB5_LS_O<br>C      |  |
| SYS_DIAG_<br>5: OP<br>ERROR_4_<br>STAT | HB4_HS<br>_OL   | HB4_LS<br>_OL   | HB3_HS_<br>OL      | HB3_LS_O<br>L      | HB2_HS_<br>OL      | HB2_LS_O<br>L      | HB1_HS_<br>OL      | HB1_LS_O<br>L      |  |
| SYS_DIAG_<br>6:OP<br>ERROR_5_<br>STAT  | HB8_HS<br>_OL   | HB8_LS<br>_OL   | HB7_HS_<br>OL      | HB7_LS_O<br>L      | HB6_HS_<br>OL      | HB6_LS_O<br>L      | HB5_HS_<br>OL      | HB5_LS_O<br>L      |  |

Figure 24. SiLM94108C-AQ Bit Mapping

#### **SPI Control Registers**

The Control Registers have a READ/WRITE access:

- The 'POR' value is defined by the register content after a POR or device Reset
  - The default value of all control registers is 0000 0000B
- One 16-bit SPI command consists of two bytes (see Figure 23 and Figure 24), i.e.
  - an address byte
  - followed by a data byte
- The control bits are not cleared or changed automatically by the device. This must be done by the microcontroller via SPI programming.
- Reading a register is done byte wise by setting the SPI bit 7 to "0" (= READ ONLY).
- Writing to a register is done byte wise by setting the SPI bit 7 to "1"

Table 6. Half-bridge output control 1 Register

| Bit | Symbol    | TYPE | Description                                  |
|-----|-----------|------|----------------------------------------------|
| [7] | HB4_HS_EN | r/w  | Half-bridge output 4 high side switch enable |
|     |           |      | 0 HS4 OFF/ High-Z (default value)            |
|     |           |      | 1 HS4 ON                                     |
| [6] | HB4_LS_EN | r/w  | Half-bridge output 4 low side switch enable  |
|     |           |      | 0 LS4 OFF/ High-Z (default value)            |
|     |           |      | 1 LS4 ON                                     |
| [5] | HB3_HS_EN | r/w  | Half-bridge output 3 high side switch enable |
|     |           |      | 0 HS3 OFF/ High-Z (default value)            |
|     |           |      | 1 HS3 ON                                     |
| [4] | HB3_LS_EN | r/w  | Half-bridge output 3 low side switch enable  |
|     |           |      | 0 LS3 OFF/ High-Z (default value)            |
|     |           |      | 1 LS3 ON                                     |
| [3] | HB2_HS_EN | r/w  | Half-bridge output 2 high side switch enable |
|     |           |      | 0 HS2 OFF/ High-Z (default value)            |
|     |           |      | 1 HS2 ON                                     |
| [2] | HB2_LS_EN | r/w  | Half-bridge output 2 low side switch enable  |
|     |           |      | 0 LS2 OFF/ High-Z (default value)            |
|     |           |      | 1 LS2 ON                                     |
| [1] | HB1_HS_EN | r/w  | Half-bridge output 1 high side switch enable |
|     |           |      | 0 HS1 OFF/ High-Z (default value)            |
|     |           |      | 1 HS1 ON                                     |
| [0] | HB1_LS_EN | r/w  | Half-bridge output 1 low side switch enable  |
|     |           |      | 0 LS1 OFF/ High-Z (default value)            |
|     |           |      | 1 LS1 ON                                     |

Note: The simultaneous activation of both HS and LS switch within a half-bridge is prevented by the digital block to avoid cross current. If both LS\_EN and HS\_EN bits of a given half-bridge are set, the logic turns off this half-bridge.

Sillumin Semiconductor Co., Ltd. - www.sillumin.com

Table 7. Half-bridge output control 2 Register

| HB_A | HB_ACT_2_CTRL([OP] 100 00[LABT]1) |      |                                              |  |  |
|------|-----------------------------------|------|----------------------------------------------|--|--|
| Bit  | Symbol                            | TYPE | Description                                  |  |  |
| [7]  | HB8_HS_EN                         | r/w  | Half-bridge output 8 high side switch enable |  |  |
|      |                                   |      | 0 HS8 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 HS8 ON                                     |  |  |
| [6]  | HB8_LS_EN                         | r/w  | Half-bridge output 8 low side switch enable  |  |  |
|      |                                   |      | 0 LS8 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 LS8 ON                                     |  |  |
| [5]  | HB7_HS_EN                         | r/w  | Half-bridge output 7 high side switch enable |  |  |
|      |                                   |      | 0 HS7 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 HS7 ON                                     |  |  |
| [4]  | HB7_LS_EN                         | r/w  | Half-bridge output 7 low side switch enable  |  |  |
|      |                                   |      | 0 LS7 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 LS7 ON                                     |  |  |
| [3]  | HB6_HS_EN                         | r/w  | Half-bridge output 6 high side switch enable |  |  |
|      |                                   |      | 0 HS6 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 HS6 ON                                     |  |  |
| [2]  | HB6_LS_EN                         | r/w  | Half-bridge output 6 low side switch enable  |  |  |
|      |                                   |      | 0 LS6 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 LS6 ON                                     |  |  |
| [1]  | HB5_HS_EN                         | r/w  | Half-bridge output 5 high side switch enable |  |  |
|      |                                   |      | 0 HS5 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 HS5 ON                                     |  |  |
| [0]  | HB5_LS_EN                         | r/w  | Half-bridge output 5 low side switch enable  |  |  |
|      |                                   |      | 0 LS5 OFF/ High-Z (default value)            |  |  |
|      |                                   |      | 1 LS5 ON                                     |  |  |

Note: The simultaneous activation of both HS and LS switch within a half-bridge is prevented by the digital block to avoid cross current. If both LS\_EN and HS\_EN bits of a given half-bridge are set, the logic turns off this half-bridge.



Table 8. Half-bridge output mode control 1 Register

| HB_MC | HB_MODE_1_CTRL ([OP] 110 00[LABT]1) |       |                                   |  |  |
|-------|-------------------------------------|-------|-----------------------------------|--|--|
| Bit   | Symbol                              | TYPE  | Description                       |  |  |
| [7-6] | HB4_MODEn (n =                      | r/w   | Half-bridge output 4 mode select  |  |  |
|       | 1,0)                                |       | 00 No PWM (default value)         |  |  |
|       |                                     |       | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |       | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |       | 11 PWM control with PWM Channel 3 |  |  |
| [5-4] | HB3_MODEn (n =                      | r/w   | Half-bridge output 3 mode select  |  |  |
|       | 1,0)                                |       | 00 No PWM (default value)         |  |  |
|       |                                     |       | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |       | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |       | 11 PWM control with PWM Channel 3 |  |  |
| [3-2] | HB2_MODEn (n =                      | r/w   | Half-bridge output 2 mode select  |  |  |
|       | 1,0)                                |       | 00 No PWM (default value)         |  |  |
|       |                                     |       | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |       | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |       | 11 PWM control with PWM Channel 3 |  |  |
| [1-0] | HB1_MODEn (n =                      | = r/w | Half-bridge output 1 mode select  |  |  |
|       | 1,0)                                |       | 00 No PWM (default value)         |  |  |
|       |                                     |       | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |       | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |       | 11 PWM control with PWM Channel 3 |  |  |



Table 9. Half-bridge output mode control 2 Register

| HB_MO | HB_MODE_2_CTRL ([OP] 001 00[LABT]1) |      |                                   |  |  |
|-------|-------------------------------------|------|-----------------------------------|--|--|
| Bit   | Symbol                              | TYPE | Description                       |  |  |
| [7-6] | HB8_MODEn (n =                      | r/w  | Half-bridge output 8 mode select  |  |  |
|       | 1,0)                                |      | 00 No PWM (default value)         |  |  |
|       |                                     |      | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |      | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |      | 11 PWM control with PWM Channel 3 |  |  |
| [5-4] | HB7_MODEn (n =                      | r/w  | Half-bridge output 7 mode select  |  |  |
|       | 1,0)                                |      | 00 No PWM (default value)         |  |  |
|       |                                     |      | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |      | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |      | 11 PWM control with PWM Channel 3 |  |  |
| [3-2] | HB6_MODEn (n =                      | r/w  | Half-bridge output 6 mode select  |  |  |
|       | 1,0)                                |      | 00 No PWM (default value)         |  |  |
|       |                                     |      | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |      | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |      | 11 PWM control with PWM Channel 3 |  |  |
| [1-0] | HB5_MODEn (n =                      | r/w  | Half-bridge output 5 mode select  |  |  |
|       | 1,0)                                |      | 00 No PWM (default value)         |  |  |
|       |                                     |      | 01 PWM control with PWM Channel 1 |  |  |
|       |                                     |      | 10 PWM control with PWM Channel 2 |  |  |
|       |                                     |      | 11 PWM control with PWM Channel 3 |  |  |

Table 10. PWM channel frequency select Register

| PWM_  | PWM_CH_FREQ_CTRL ([OP] 011 00[LABT]1) |      |                                           |  |
|-------|---------------------------------------|------|-------------------------------------------|--|
| Bit   | Symbol                                | TYPE | Description                               |  |
| [7-6] | FM_CLK_MODn                           | r/w  | FM Modulation Enable <sup>1</sup>         |  |
|       | (n = 1,0)                             |      | 00 No modulation (default)                |  |
|       |                                       |      | 01 Modulation frequency 15.625kHz         |  |
|       |                                       |      | 10 Modulation frequency 31.25kHz          |  |
|       |                                       |      | 11 Modulation frequency 62.5kHz           |  |
| [5-4] | PWM_CH3_FREQ_n                        | r/w  | PWM Channel 3 frequency select            |  |
|       | (n = 1,0)                             |      | 00 PWM is stopped and off (default value) |  |
|       |                                       |      | 01 PWM frequency 1 : 80Hz                 |  |
|       |                                       |      | 10 PWM frequency 2 : 100Hz                |  |
|       |                                       |      | 11 PWM frequency 3 : 200Hz                |  |
| [3-2] | PWM_CH2_FREQ_n<br>(n = 1,0)           | r/w  | PWM Channel 2 frequency select            |  |
|       |                                       |      | 00 PWM is stopped and off (default value) |  |
|       |                                       |      | 01 PWM frequency 1 : 80Hz                 |  |
|       |                                       |      | 10 PWM frequency 2 : 100Hz                |  |
|       |                                       |      | 11 PWM frequency 3 : 200Hz                |  |
| [1-0] | PWM_CH1_FREQ_n                        | r/w  | PWM Channel 1 frequency select            |  |
|       | (n = 1,0)                             |      | 00 PWM is stopped and off (default value) |  |
|       |                                       |      | 01 PWM frequency 1 : 80Hz                 |  |
|       |                                       |      | 10 PWM frequency 2 : 100Hz                |  |
|       |                                       |      | 11 PWM frequency 3 : 200Hz                |  |

1 Not subject to production test, guaranteed by design. Frequency may deviate by ±10%



Table 11. PWM channel 1 duty cycle configuration Register

| PWM1  | PWM1_DC_CTRL ([OP] 111 00[LABT]1) |      |                                                         |  |  |
|-------|-----------------------------------|------|---------------------------------------------------------|--|--|
| Bit   | Symbol                            | TYPE | Description                                             |  |  |
| [7-0] | PWM1_DC_CTRLn                     | r/w  | PWM Channel 1 Duty Cycle configuration (bit7=MSB; bit0) |  |  |
|       |                                   |      | 0000 0000 100% OFF (default value)                      |  |  |
|       |                                   |      | xxxx xxxx parts of 255 ON                               |  |  |
|       |                                   |      | 1111 1111 100% ON                                       |  |  |

Table 12. PWM channel 2 duty cycle configuration Register

| PWM2  | PWM2_DC_CTRL ([OP] 000 10[LABT]1) |      |                                                         |  |  |
|-------|-----------------------------------|------|---------------------------------------------------------|--|--|
| Bit   | Symbol                            | TYPE | Description                                             |  |  |
| [7-0] | PWM2_DC_CTRLn                     | r/w  | PWM Channel 2 Duty Cycle configuration (bit7=MSB; bit0) |  |  |
|       |                                   |      | 0000 0000 100% OFF (default value)                      |  |  |
|       |                                   |      | xxxx xxxx parts of 255 ON                               |  |  |
|       |                                   |      | 1111 1111 100% ON                                       |  |  |

 Table 13. PWM channel 3 duty cycle configuration Register

| PWM3  | PWM3_DC_CTRL ([OP] 100 10[LABT]1) |      |                                                         |  |  |
|-------|-----------------------------------|------|---------------------------------------------------------|--|--|
| Bit   | Symbol                            | TYPE | Description                                             |  |  |
| [7-0] | PWM3_DC_CTRLn                     | r/w  | PWM Channel 3 Duty Cycle configuration (bit7=MSB; bit0) |  |  |
|       |                                   |      | 0000 0000 100% OFF (default value)                      |  |  |
|       |                                   |      | xxxx xxxx parts of 255 ON                               |  |  |
|       |                                   |      | 1111 1111 100% ON                                       |  |  |



Table 14. Device Configuration Control Register

| CONF  | CONFIG_CTRL ([OP] 110 01[LABT]1) |      |                                                                          |  |
|-------|----------------------------------|------|--------------------------------------------------------------------------|--|
| Bit   | Symbol                           | TYPE | Description                                                              |  |
| [7-4] | Reserved                         | r    | Always reads as '0'.                                                     |  |
| [3-0] | DEV_IDn                          | r/w  | Device/ derivative identifier                                            |  |
|       |                                  |      | Note: These bits can be used to verify the silicon content of the device |  |
|       |                                  |      | 1000 SiLM94112 chip                                                      |  |
|       |                                  |      | 1001 SiLM94110 chip                                                      |  |
|       |                                  |      | 1010 SiLM94108 chip                                                      |  |
|       |                                  |      | 1011 SiLM94106 chip                                                      |  |
|       |                                  |      | 1100 SiLM94104 chip                                                      |  |
|       |                                  |      | 1101 SiLM94103 chip                                                      |  |
|       |                                  |      | 1110 reserved                                                            |  |
|       |                                  |      | 1111 reserved                                                            |  |

Table 15. OVP2 and 2kHz Control Register

| OVP2 | OVP2_2k_CTRL ([OP] 000 11[LABT]1) |      |                                                                                        |  |
|------|-----------------------------------|------|----------------------------------------------------------------------------------------|--|
| Bit  | Symbol                            | TYPE | Description                                                                            |  |
| [7]  | EXT_OVP                           | r/w  | Overvoltage protection configuration                                                   |  |
|      |                                   |      | 0 = Overvoltage protection threshold is at 21 V (default value)                        |  |
|      |                                   |      | 1 = Overvoltage protection threshold is at 33 V                                        |  |
| [6]  | PWM_CH3_2k                        | r/w  | PWM Channel 3 frequency select                                                         |  |
|      |                                   |      | 0 = PWM Channel 3 frequency is decided by Register<br>PWM_CH_FREQ_CTRL (default value) |  |
|      |                                   |      | 1 = PWM frequency is 2000 Hz                                                           |  |
| [5]  | PWM_CH2_2k                        | r/w  | PWM Channel 2 frequency select                                                         |  |
|      |                                   |      | 0 = PWM Channel 2 frequency is decided by Register<br>PWM_CH_FREQ_CTRL (default value) |  |
|      |                                   |      | 1 = PWM frequency is 2000 Hz                                                           |  |
| [4]  | PWM_CH1_2k                        | r/w  | PWM Channel 1 frequency select                                                         |  |
|      |                                   |      | 0 = PWM Channel 1 frequency is decided by Register<br>PWM_CH_FREQ_CTRL (default value) |  |
|      |                                   |      | 1 = PWM frequency is 2000 Hz                                                           |  |
| [3]  | Reserved                          | r    | Always reads as '0'.                                                                   |  |
| [2]  | Reserved                          | r    | Always reads as '0'.                                                                   |  |
| [1]  | Reserved                          | r    | Always reads as '0'.                                                                   |  |
| [0]  | Reserved                          | r    | Always reads as '0'.                                                                   |  |

Table 16. OLDN, DT and SR Control Register

| OLDN  | OLDN_DT_SR_CTRL ([OP] 001 11[LABT]1) |      |                                                              |  |  |
|-------|--------------------------------------|------|--------------------------------------------------------------|--|--|
| Bit   | Symbol                               | TYPE | Description                                                  |  |  |
| [7-6] | Reserved                             | r    | Always reads as '0'.                                         |  |  |
| [5]   | DIS_OL_NEG                           | r/w  | 0 = Active Free Wheeling OLD mode is enabled (default value) |  |  |
|       |                                      |      | 1 = Active Free Wheeling OLD mode is disabled                |  |  |
| [4]   | DTIME_SET                            | r/w  | Dead Time DHL/DLH Setting                                    |  |  |
|       |                                      |      | 0 = 128us (default value)                                    |  |  |
|       |                                      |      | 1 = 32us                                                     |  |  |
| [3]   | Reserved                             | r    | Always reads as '0'.                                         |  |  |
| [2-0] | SR_CTRL                              | r/w  | Slew Rate Control                                            |  |  |
|       |                                      |      | 000 =0.35V/us (default value)                                |  |  |
|       |                                      |      | 001 =0.2V/us                                                 |  |  |
|       |                                      |      | 010 =0.5V/us                                                 |  |  |
|       |                                      |      | 011 =0.6V/us                                                 |  |  |
|       |                                      |      | 100 =1.7V/us                                                 |  |  |
|       |                                      |      | 101 =1V/us                                                   |  |  |
|       |                                      |      | 110 =2.4V/us                                                 |  |  |
|       |                                      |      | 111 =3V/us                                                   |  |  |

#### **SPI Status Registers**

The Status Registers have a READ/CLEAR access:

- The 'POR Value' of the Status registers (content after a POR or device Reset) and is 0000 0000B.
- One 16-bit SPI command consists of two bytes (see Figure 25 and Figure 26), i.e.
- an address byte
- followed by a data byte
- Reading a register is done byte wise by setting the SPI bit 7 of the address byte to "0" (= Read Only).
- Clearing a register is done byte wise by setting the SPI bit 7 of the address byte to "1".
- SPI status registers are not cleared automatically by the device. This must be done by the microcontroller via SPI command.

#### Table 17. Global status 1 Register

| SYS_ | SYS_DIAG1 ([OP] 001 10[LABT]1) |      |                                                                                                                                                    |  |  |
|------|--------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit  | Symbol                         | TYPE | Description                                                                                                                                        |  |  |
| [7]  | SPI_ERR                        | r/c  | SPI error detection                                                                                                                                |  |  |
|      |                                |      | 0 No SPI protocol error is detected (default value).                                                                                               |  |  |
|      |                                |      | 1 An SPI protocol error is detected.                                                                                                               |  |  |
| [6]  | LE                             | r    | Load error detection (logic OR combination of Open Load and Overcurrent)                                                                           |  |  |
|      |                                |      | 0 No Open Load and no Overcurrent detected (default value)                                                                                         |  |  |
|      |                                |      | 1 Open Load or Overcurrent detected in at least one of the power<br>outputs. Error latched. Faulty output is latched off in case of<br>Overcurrent |  |  |
| [5]  | VS_UV                          | r/c  | VS Undervoltage error detection                                                                                                                    |  |  |
|      |                                |      | 0 No undervoltage on VS detected (default value)                                                                                                   |  |  |
|      |                                |      | 1 Undervoltage on VS detected. Error latched and all outputs disabled.                                                                             |  |  |
| [4]  | VS_OV                          | r/c  | VS Overvoltage error detection                                                                                                                     |  |  |
|      |                                |      | 0 No overvoltage on VS detected (default value)                                                                                                    |  |  |
|      |                                |      | 1 Overvoltage on VS detected. Error latched and all outputs disabled.                                                                              |  |  |
| [3]  | NPOR                           | r/c  | Not Power On Reset (NPOR) detection                                                                                                                |  |  |
|      |                                |      | 0 POR on EN or VDD supply rail (default value)                                                                                                     |  |  |
|      |                                |      | 1 No POR                                                                                                                                           |  |  |
| [2]  | TSD                            | r/c  | Temperature shutdown error detection                                                                                                               |  |  |
|      |                                |      | 0 Junction temperature below temperature shutdown threshold (default value)                                                                        |  |  |
|      |                                |      | 1 Junction temperature has reached temperature shutdown threshold. Error latched and all outputs disabled.                                         |  |  |
| [1]  | TPW                            | r/c  | Temperature pre-warning error detection                                                                                                            |  |  |
|      |                                |      | 0 Junction temperature below temperature pre-warning threshold (default value)                                                                     |  |  |
|      |                                |      | 1 Junction temperature has reached temperature pre-warning threshold.                                                                              |  |  |
| [0]  | Reserved                       | r    | Bit reserved. Always reads '0'.                                                                                                                    |  |  |

Note: The LE bit in the Global Status register is read only. It reflects an OR combination of the respective open load and overcurrent errors of the half-bridge channels. If all OC/ OL bits of the respective high-side and low-side channels are cleared to '0', the LE bit will be automatically update.

Table 18. Overcurrent error status of half-bridge outputs 1 – 4 Register

| SYS_ | SYS_DIAG2 OP_ERROR_1_STAT ([OP] 101 10[LABT]1) |      |                                                                      |  |
|------|------------------------------------------------|------|----------------------------------------------------------------------|--|
| Bit  | Symbol                                         | TYPE | Description                                                          |  |
| [7]  | HB4_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 4 overcurrent detection         |  |
|      |                                                |      | 0 No error on HS4 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on HS4 switch. Error latched and HS4 disabled |  |
| [6]  | HB4_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 4 overcurrent detection          |  |
|      |                                                |      | 0 No error on LS4 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on LS4 switch. Error latched and LS4 disabled |  |
| [5]  | HB3_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 3 overcurrent detection         |  |
|      |                                                |      | 0 No error on HS3 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on HS3 switch. Error latched and HS3 disabled |  |
| [4]  | HB3_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 3 overcurrent detection          |  |
|      |                                                |      | 0 No error on LS3 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on LS3 switch. Error latched and LS3 disabled |  |
| [3]  | HB2_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 2 overcurrent detection         |  |
|      |                                                |      | 0 No error on HS2 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on HS2 switch. Error latched and HS2 disabled |  |
| [2]  | HB2_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 2 overcurrent detection          |  |
|      |                                                |      | 0 No error on LS2 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on LS2 switch. Error latched and LS2 disabled |  |
| [1]  | HB1_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 1 overcurrent detection         |  |
|      |                                                |      | 0 No error on HS1 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on HS1 switch. Error latched and HS1 disabled |  |
| [0]  | HB1_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 1 overcurrent detection          |  |
|      |                                                |      | 0 No error on LS1 switch (default value)                             |  |
|      |                                                |      | 1 Overcurrent detected on LS1 switch. Error latched and LS1 disabled |  |

Table 19. Overcurrent error status of half-bridge outputs 5 - 8 Register

| SYS_ | SYS_DIAG3 OP_ERROR_2_STAT ([OP] 011 10[LABT]1) |      |                                                                      |  |  |
|------|------------------------------------------------|------|----------------------------------------------------------------------|--|--|
| Bit  | Symbol                                         | TYPE | Description                                                          |  |  |
| [7]  | HB8_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 8 overcurrent detection         |  |  |
|      |                                                |      | 0 No error on HS8 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on HS8 switch. Error latched and HS8 disabled |  |  |
| [6]  | HB8_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 8 overcurrent detection          |  |  |
|      |                                                |      | 0 No error on LS8 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on LS8 switch. Error latched and LS8 disabled |  |  |
| [5]  | HB7_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 7 overcurrent detection         |  |  |
|      |                                                |      | 0 No error on HS7 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on HS7 switch. Error latched and HS7 disabled |  |  |
| [4]  | HB7_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 7 overcurrent detection          |  |  |
|      |                                                |      | 0 No error on LS7 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on LS7 switch. Error latched and LS7 disabled |  |  |
| [3]  | HB6_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 6 overcurrent detection         |  |  |
|      |                                                |      | 0 No error on HS6 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on HS6 switch. Error latched and HS6 disabled |  |  |
| [2]  | HB6_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 6 overcurrent detection          |  |  |
|      |                                                |      | 0 No error on LS6 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on LS6 switch. Error latched and LS6 disabled |  |  |
| [1]  | HB5_HS_OC                                      | r/c  | High-side (HS) switch of half-bridge 5 overcurrent detection         |  |  |
|      |                                                |      | 0 No error on HS5 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on HS5 switch. Error latched and HS5 disabled |  |  |
| [0]  | HB5_LS_OC                                      | r/c  | Low-side (LS) switch of half-bridge 5 overcurrent detection          |  |  |
|      |                                                |      | 0 No error on LS5 switch (default value)                             |  |  |
|      |                                                |      | 1 Overcurrent detected on LS5 switch. Error latched and LS5 disabled |  |  |

Table 20. Open load error status of half-bridge outputs 1 - 4 Register

| SYS_ | SYS_DIAG5 OP_ERROR_4_STAT ([OP] 000 01[LABT]1) |      |                                                            |  |  |
|------|------------------------------------------------|------|------------------------------------------------------------|--|--|
| Bit  | Symbol                                         | TYPE | Description                                                |  |  |
| [7]  | HB4_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 4 open load detection |  |  |
|      |                                                |      | 0 No error on HS4 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS4 switch. Error latched.         |  |  |
| [6]  | HB4_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 4 open load detection  |  |  |
|      |                                                |      | 0 No error on LS4 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS4 switch. Error latched.         |  |  |
| [5]  | HB3_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 3 open load detection |  |  |
|      |                                                |      | 0 No error on HS3 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS3 switch. Error latched.         |  |  |
| [4]  | HB3_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 3 open load detection  |  |  |
|      |                                                |      | 0 No error on LS3 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS3 switch. Error latched.         |  |  |
| [3]  | HB2_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 2 open load detection |  |  |
|      |                                                |      | 0 No error on HS2 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS2 switch. Error latched.         |  |  |
| [2]  | HB2_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 2 open load detection  |  |  |
|      |                                                |      | 0 No error on LS2 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS2 switch. Error latched.         |  |  |
| [1]  | HB1_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 1 open load detection |  |  |
|      |                                                |      | 0 No error on HS1 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS1 switch. Error latched.         |  |  |
| [0]  | HB1_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 1 open load detection  |  |  |
|      |                                                |      | 0 No error on LS1 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS1 switch. Error latched.         |  |  |
|      |                                                |      | 1 Open load detected on LS1 switch. Error latched.         |  |  |

Table 21. Open load error status of half-bridge outputs 5 - 8 Register

| SYS_ | SYS_DIAG6 OP_ERROR_5_STAT ([OP] 100 01[LABT]1) |      |                                                            |  |  |
|------|------------------------------------------------|------|------------------------------------------------------------|--|--|
| Bit  | Symbol                                         | TYPE | Description                                                |  |  |
| [7]  | HB8_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 8 open load detection |  |  |
|      |                                                |      | 0 No error on HS8 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS8 switch. Error latched.         |  |  |
| [6]  | HB8_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 8 open load detection  |  |  |
|      |                                                |      | 0 No error on LS8 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS8 switch. Error latched.         |  |  |
| [5]  | HB7_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 7 open load detection |  |  |
|      |                                                |      | 0 No error on HS7 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS7 switch. Error latched.         |  |  |
| [4]  | HB7_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 7 open load detection  |  |  |
|      |                                                |      | 0 No error on LS7 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS7 switch. Error latched.         |  |  |
| [3]  | HB6_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 6 open load detection |  |  |
|      |                                                |      | 0 No error on HS6 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS6 switch. Error latched.         |  |  |
| [2]  | HB6_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 6 open load detection  |  |  |
|      |                                                |      | 0 No error on LS6 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS6 switch. Error latched.         |  |  |
| [1]  | HB5_HS_OL                                      | r/c  | High-side (HS) switch of half-bridge 5 open load detection |  |  |
|      |                                                |      | 0 No error on HS5 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on HS5 switch. Error latched.         |  |  |
| [0]  | HB5_LS_OL                                      | r/c  | Low-side (LS) switch of half-bridge 5 open load detection  |  |  |
|      |                                                |      | 0 No error on LS5 switch (default value)                   |  |  |
|      |                                                |      | 1 Open load detected on LS5 switch. Error latched.         |  |  |
|      | l                                              |      |                                                            |  |  |

## SiLM94108C-AQ

### **APPLICATION INFORMATION**

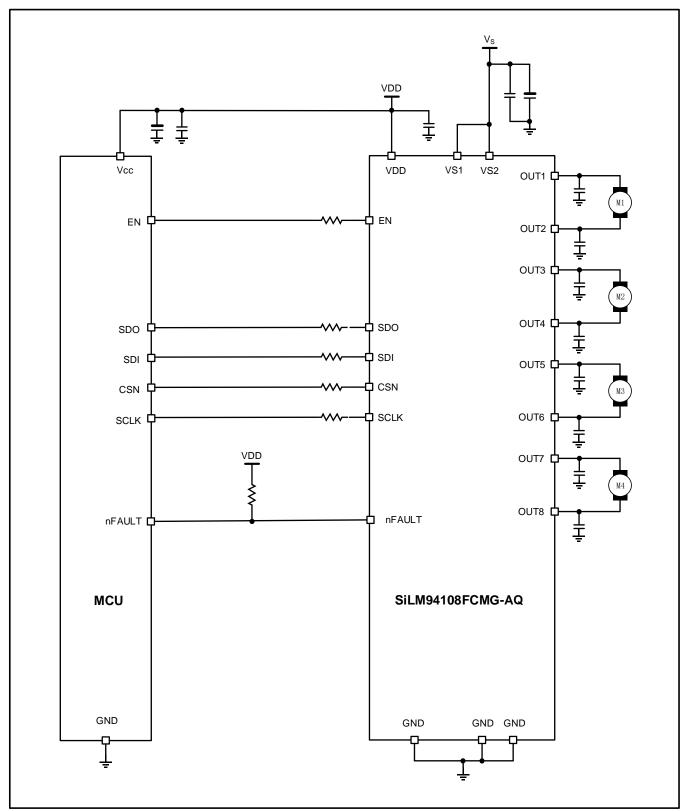



Figure 25. Application example for DC-motor loads(SiLM94108FCMG-AQ)

### SiLM94108C-AQ



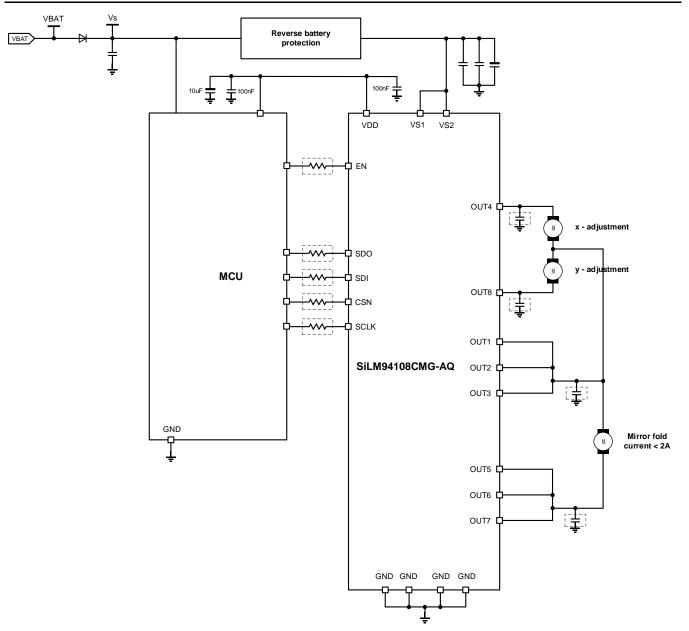



Figure 26. Application example for side mirror control(SiLM94108CMG-AQ)

## SiLM94108C-AQ

0.25

MAX 1.2

0.15

1.05

0.75

8

0.3

0.25

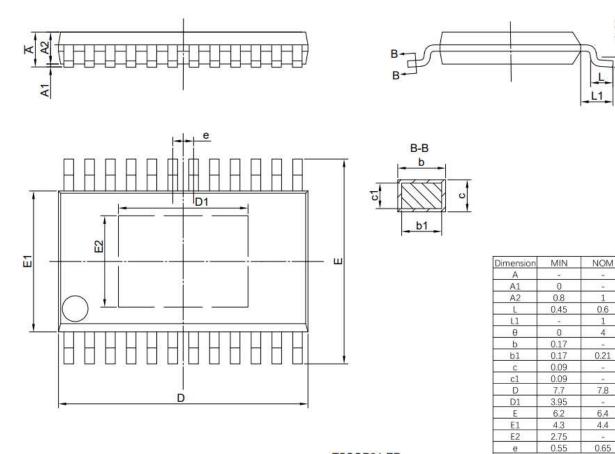
0.2

0.16

7.9

4.15

6.6


4.5

2.95

0.75

Unit : mm

### PACKAGE CASE OUTLINES



TSSOP24-EP

Figure 27. TSSOP24-EP Outline Dimensions



#### **REVISION HISTORY**

Note: page numbers for previous revisions may differ from page numbers in current version

| Page or Item                  | Subjects (major changes since previous revision) |  |  |  |  |
|-------------------------------|--------------------------------------------------|--|--|--|--|
| Rev 1.0 datasheet, 2024-08-13 |                                                  |  |  |  |  |
| Whole document                | Initial released                                 |  |  |  |  |